Exemple : Si ABC est un triangle rectangle en A alors on a : Remarque : l'hypoténuse étant le plus grand côté dans un triangle rectangle, le rapport est toujours plus petit que 1. Le cosinus d'un angle aigu est donc un nombre compris entre 0 et 1.
La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1. Si l'on introduit une notion d'orientation, les angles peuvent prendre n'importe quelle valeur positive ou négative, et le sinus est un nombre compris entre −1 et +1.
Remarque 1 : Le cosinus d'un angle aigu est toujours compris entre 0 et 1 : Le cosinus d'un angle aigu est le quotient de deux longueurs, donc de deux nombres positifs de plus on divise par l'hypoténuse qui est le plus grand côté.
Dans un triangle rectangle, le cosinus d'un angle est le rapport de la longueur du côté adjacent par la longueur de l'hypoténuse. Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
Trigonométrie Exemples
La valeur exacte de cos(0) est 1 . Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site web.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 . La tangente, quant à elle, n'est pas définie car cela conduirait a une division par zéro.
Quant au cosinus, c'est tout simplement le sinus du complémentaire (de l'angle) : « co- » vient du latin cum, qui signifie « avec ». La tangente, elle, vient de ce qu'elle mesure une portion d'une tangente au cercle trigono- métrique.
Méthode On utilise la formule \cos ^{2}(x)+\sin ^{2}(x)=1 qui permet de relier le sinus et le cosinus d'un nombre. On résout l'équation associée. On choisit la bonne valeur en utilisant l'intervalle auquel appartient x.
Si 0 ≤ θ ≤ π, sinθ est positif. Si π/2 ≤ θ ≤ 3π/2, cosθ est négatif. Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
Quels moyens mnémotechniques utiliser en trigonométrie ? Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
Le cosinus d'un angle aigu dans un triangle rectangle est le quotient de son côté adjacent par l'hypoténuse.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
sin -1(x) = 1/sin(x).
Mais la notation sin-1 désigne la fonction réciproque de sin, ie arcsin, de façon générale f -1 est la bijection réciproque d'une bijection.
Autrement dit, le sinus d'un angle est égal au cosinus de son complémentaire.
Valeur exacte
La division 64,5 ÷ 15 se termine, on dit aussi qu'elle « tombe juste ». L'écriture décimale 4,3 est donc la valeur exacte du quotient. On peut écrire 64,5 ÷ 15 = 4,3.
Sa valeur approchée par défaut à moins de 0,5×10–15 près est 3,141592653589793 en écriture décimale. De nombreuses formules de physique, d'ingénierie et bien sûr de mathématiques impliquent π, qui est une des constantes les plus importantes de cette discipline.
Deux d'entre eux, à la tournure très latine, sinus et cosinus, nous réservent une petite surprise… Le mot sinus est un mot latin signifiant courbe, pli, cavité. Il a donné en français les mots sein et sinueux.
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Renvoie l'arcsinus ou le sinus inverse d'un nombre. L'arcsinus est l'angle dont le sinus est l'argument nombre. L'angle renvoyé, exprimé en radians, est compris entre -pi/2 et pi/2.
Points remarquables : sin(0)=0.
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .