La formule avec n-1 concerne l'écart type de toute la population estimé à partir d'un échantillon. Pour une petite population, on peut prendre comme échantillon la population complète et on voit bien que l'estimation n'est pas bonne.
Et la raison pour laquelle on divise par N est tout simplement que la probabilité associée à chaque élément de la population finie de taille N est 1/N menant au calcul de la variance σ2.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
Comment calculer l'écart-type
1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues. 4 - On divise par l'effectif de la série.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d'après l'appellation standard deviation en anglais.
L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
∑ [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
L'écart-type expérimental est s=racinecarré[Σ(xi-m)2/(n-1)] (et c'est un estimateur biaisé de σ).
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
La différence entre la variance et l'écart-type comme indicateur de dispersion est donc que l'écart-type mesure la distance moyenne par rapport à la moyenne et que la variance mesure la distance moyenne au carré par rapport à la moyenne.
L'écart type est une mesure de la dispersion des valeurs par rapport à la moyenne (valeur moyenne). Important : Cette fonction a été remplacée par une ou plusieurs nouvelles fonctions proposant une meilleure précision et dont les noms reflètent mieux leur rôle.
E ( X ) = X ¯ = x 1 + ⋯ + x N N . La variance et l'écart-type mesurent eux la dispersion des valeurs de cette série statistique autour de sa moyenne. La variance V(X) est définie par V(X)=1N((x1−¯X)2+⋯+(xN−¯X)2)=1NN∑k=1(xk−¯X)2.
Afin de déterminer si un échantillon est représentatif d'une population, on calcule l'intervalle I de fluctuation au seuil de 95% ainsi que la fréquence f dans l'échantillon. Si f \in I, alors l'échantillon est représentatif de la population.
Voici un exemple pour bien comprendre comme calculer un écart type. Prenons une série de données comportant les valeurs suivantes : 2, 4, 6 et 8. Toutes ces données sont additionnées pour obtenir la somme de 20. Cette somme est divisée par le nombre total des données qui est de 4, ce qui donne une moyenne égale à 5.
En règle générale, plus l'écart type est grand, plus l'erreur type de la moyenne est élevée et moins l'estimation de la moyenne de la population est précise. En revanche, plus l'effectif d'échantillon est élevé, plus l'erreur type de la moyenne est faible et plus l'estimation de la moyenne de la population est précise.
L'écart-type est la racine carrée de la variance. C'est la mesure la plus courante relative à la dispersion des données par rapport à la moyenne. De façon analogue à la variance, plus l'écart-type est important, plus les données sont dispersées.
On démontre que V= ( (Σ x²) / N ) - μ². Cette formule est plus simple à appliquer si on calcule la variance à la main. Créé par Sal Khan. Les discussions ne sont pas disponibles pour le moment.
Priorités de calcul : Les calculs se font dans l'ordre des priorités suivant : 1/ Les calculs entre parenthèses 2/ Les puissances 3/ La multiplication et la division 4/ L'addition et la soustraction 5/ En cas d'opérations de mêmes priorités, de gauche à droite.
Le symbole Σ (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
L'étendue d'une série statistique est la différence entre la valeur la plus grande et la valeur la plus petite de cette série. Etendue = 4 – 0 = 4. L'étendue de cette série statistique est donc de 4. Remarque : L'étendue est un indicateur de la dispersion des valeurs de cette série statistique.
Pour cela, appuyer sur les touches o, e {STAT} et q {X}. Saisir ensuite, par exemple, w { } ou y { } pour obtenir la moyenne ou l'écart-type de la série.
L'incertitude-type permet de définir un intervalle dans lequel la valeur vraie a de grandes chances de se trouver. Cet intervalle est centré sur la valeur moyenne m.