utilise le pgcd quand on s'occupe des diviseurs communs à ces nombres et qu'on est amené à chercher le plus grand de ces diviseurs. Le PGCD de différents nombres est un diviseur de chacun des nombres et est donc toujours inférieur ou égal à chacun des nombres.
En mathématiques, le PGCD de nombres entiers différents de zéro est, parmi les diviseurs communs à ces entiers, le plus grand d'entre eux. PGCD signifie plus grand commun diviseur. Par exemple, les diviseurs positifs de 30 sont, dans l'ordre : 1, 2, 3, 5, 6, 10, 15 et 30.
Je crois que ça vient de l'anglais : Greatest Common Divisor (GCD). En français, on traduit ça par "Plus Grand Diviseur Commun" mais pour garder "GCD", on dit "Plus Grand Commun Diviseur". C'est en tout cas une explication que l'on m'avait donnée.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
donc PPCM(10 ; 12) = 2 x 5 x 6 = 60 .
Le PPCM de 24,36 est le résultat de la multiplication de tous les facteurs premiers par le plus grand nombre de fois qu'ils apparaissent dans chaque nombre. Multiplier 2⋅2⋅2⋅3⋅3 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 . Multiplier 2 2 par 2 2 . Multiplier 4 4 par 2 2 .
Réponse plausible non vérifiée : l'adjectif "commun" se plaçait autrefois avant le nom, comme en témoigne l'expression : aucune commune mesure. On peut aussi remarquer que ppcm est plus facile à prononcer que ppmc.. - Vous n'êtes pas un peu vieux ?
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
Abrév. de plus petit commun multiple (v. multiple B). Soit deux entiers naturels non nuls, a et b. L'ensemble des multiples non nuls communs à a et b admet un plus petit élément −qu'on appelle plus petit commun multiple de a et b −qu'on note: P.P.C.M.
il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5. Pour trouver le PGCD de 3 entiers, On cherche le PGCD de 2 d'entre eux, que l'on note D.
Prenons un exemple avec 108 et 60.
Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
Rappel sur le PGCD
On a vu en classe de 3ème que le PGCD de deux nombres a et b est le plus grand nombre qui divise à la fois a et b. Par exemple, le PGCD de 15 et 10 est 5. Pour déterminer le PGCD de deux nombres, on peut faire une liste des diviseurs de a puis de b et déterminer le plus grand diviseur commun.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 .
Le pgcd (plus grand commun diviseur) de plusieurs nombres décomposés en facteurs premiers, est égal au produit de tous les facteurs premiers communs à ces nombres, chacun d'eux n'est pris qu'une seule fois, avec son exposant le plus petit. 45 = 3×3×5 = 3²×5. Le pgcd = 3×5 = 15.
11, 22, 33, 44, 55, 66, 77, 88, 99, 110, …
12-24-36-48-60-72-84-96-108-120-132-144-156-166-180-192-204-216-228-240-252-264-276-288-300..
L'expression un "multiple nul" fait référence au nombre 0. Un multiple non nul est donc un multiple autre que le nombre 0.
Le plus petit multiple de 3, 5 et 7. Je suis le nombre.... ? Je suis le nombre : 105.
alors : PPCM(12, 15) = 60. Si mult(9) = {0, 9, 18, 27, 36, 45, 54, 63, 72, …} et mult(21) = {0, 21, 42, 63, 84, …}, alors : PPCM(9, 21) = 63.
Les multiples de 18 sont : 0, 18, 36, 54, 72, 90, 108, etc. Les multiples de 45 sont : 0, 45, 90, 135, etc.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.