On dit que 1 est un élément neutre pour la multiplication ; la multiplication par 0 qui donne toujours 0 : 0 × a = a × 0 = 0. on dit que 0 est un élément absorbant pour la multiplication.
Puissance à exposant zéro
La convention 00 = 1 est utilisée dans un cadre abstrait plus large, par exemple pour identifier le polynôme X0 avec la fonction constante de valeur 1.
Et les zéros à ajouter alors ? Et bien il en va de la multiplication comme de la numération décimale en général: les zéros servent à boucher les trous que créent les décalages.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Cependant, zéro joue un rôle spécial dans les nombres, tout comme son (grand) camarade 1. En effet, un nombre auquel on ajoute 0 reste inchangé. En termes plus mathématiques, pour tout nombre réel x, 0+x=x+0=x. Du côté de la multiplication, tout nombre multiplié par 1 reste inchangé, i.e, pour tout nombre réel x, 1.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Le chiffre zéro a été utilisé pour la première fois par les babyloniens au cours du deuxième millénaire avant J.C., avant d'être réinventé par les Mayas puis par les Hindous. Mais ce sont les arabes qui l'intégreront à leur système de numération, pour le diffuser dans toute l'Europe au cours du X° siècle.
la multiplication par 1 qui ne change pas le facteur : 1 × a = a × 1 = a. On dit que 1 est un élément neutre pour la multiplication ; la multiplication par 0 qui donne toujours 0 : 0 × a = a × 0 = 0. on dit que 0 est un élément absorbant pour la multiplication.
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
La division par zéro donne l'infini. Cette convention a d'ailleurs été défendue par Louis Couturat dans son livre De l'infini mathématique. Cette convention est assez cohérente avec les règles de la droite réelle achevée, dans laquelle n'importe quel nombre, divisé par l'infini, donne 0.
Luca Pacioli, alias Paciuolo, alias Frater Lucas de Borgo Sancti Sepulcri (vers 1445-1450, vers 1517). Summa de Arithmetica Geometria.
Les propriétés de la multiplication : commutativité, associativité et élément neutre. Cette leçon porte sur les trois principales propriétés de la multiplication. La multiplication est commutative : On peut changer l'ordre des facteurs.
La multiplication est l'opération qui consiste à faire une addition répétée. Le produit désigne le résultat de cette opération. Les facteurs correspondent à chaque composante de la multiplication, c'est-à-dire les nombres qui sont multipliés ensemble.
Lorsque l'on met x à la puissance 0, on effectue donc un produit vide. Or, une somme vide, sans aucun terme, est égale à l'élément neutre pour l'addition, c'est-à-dire 0. Ainsi, un produit de 0 terme, vide, est égal à l'élément neutre pour la multiplication, c'est-à-dire 1. Ainsi, 0^0 = 1.
C'est la vision qu'Aristote a largement contribué à étendre jusqu'au Moyen Âge. Est 1 ce qui existe et 0 ce qui est absent. Ce sont les Babyloniens qui vont, les premiers, utiliser le zéro, non pas comme un nombre ni même un chiffre, mais comme marqueur signifiant l'absence ».
Les 33 premières puissances de deux sont : 20 = 1.
Par exemple : l'opposé de 7 est égal à -7 car 7 + (-7) = 0. l'opposé de -0,3 est 0,3 car -0,3 + 0,3 = 0.
Exemples. L'élément opposé de 8 est –8, car : 8 + (–8) = 0.
L'inverse de 5 est 1/5|1 / 5.
En pratique c'est vrai, tout corps est un groupe pour la multiplication si on le considère comme un ensemble dont zéro est exclu. En particulier, si a=0, alors tous les entiers relatifs k sont tels que 0=k⋅0, donc 0 divise 0.
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr, le vide (qui en français a également donné chiffre).
Quand on multiplie par 0,1, on déplace la virgule d'un rang vers la gauche. Cela équivaut à diviser par 10. Quand on multiplie par 0,01, on déplace la virgule de deux rangs vers la gauche.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.