Soit f une fonction définie sur un intervalle ouvert I, et a un point de I, on dit que f est dérivable selon Schwarz en a s'il existe un réel fs(a) tel que. Ce réel est appelé la dérivée symétrique de f en a.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Soient a et x deux éléments de I. "f est dérivable en a" signifie que le taux de variation de f en a admet une limite L en a. Ainsi, on peut écrire : La limite L est notée f'(a) et s'appelle le nombre dérivé de f en a.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
Théorème Soit f une fonction définie sur un intervalle I et a ∈ I. Si f est dérivable en a Alors f est continue en a. f(x) = f(a), et donc que f est donc continue en a.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente à la courbe représentative de f au point d'abscisse a a pour équation: y = f(a) + f′(a)(x - a) .
Pourquoi une fonction dérivable en un point y est nécessairement continue ? - Quora. Très intuitivement si une fonction est dérivable en un réel a alors elle admet en ce réel une tangente unique t au graphe de la fonction. La tangente t est une droite. Elle est donc partout continue et en particulier en a.
On montre que si une fonction est dérivable en un point, elle est également continue en ce point.
Deux droites sont parallèles si et seulement si elles ont le même coefficient directeur. Il faut donc ici que la tangente T_a ait pour coefficient directeur b. Deux droites sont parallèles si et seulement si elles ont le même coefficient directeur.
Du point de vue du tracé, tangente et courbe vont localement se confondre au voisinage de 2. Cas particulier : Si le nombre dérivé est nul, la tangente, dont le coefficient directeur est alors nul, est horizontale.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
La fonction valeur absolue n'est pas dérivable en 0.
Soit la fonction f définie par f(x) = si x ≠ 0, et f(0) = 1. Donc la fonction f est continue en 0.
Si l'on veut définir une fonction sur un intervalle et obtenir sa courbe il faut saisir : Fonction[expression en fonction de x, borne inf, borne sup]. Par exemple : si on tape dans la ligne de saisie la séquence Fonction[x²,- 4,3], on obtient le tracé de la parabole sur l'intervalle [-4 ;3].
En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle. Montrer que l'équation x^3-2x+1=0 admet une unique solution sur \left]-\infty ; -1 \right].
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Lorsque la valeur absolue est égale à un nombre positif |x+3|=5 | x + 3 | = 5 Comme 5 est un nombre positif, cette équation possède 2 solutions. Lorsque la valeur absolue est égale à un nombre négatif |x−4|=−25 | x − 4 | = − 25 Comme −25 est un nombre négatif, cette équation ne possède aucune solution.