Quand l'intégrale est nulle ?

Interrogée par: Astrid Le Marchand  |  Dernière mise à jour: 24. Juni 2024
Notation: 5 sur 5 (30 évaluations)

Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle. Proposition : Soit f:[−a,a]→C f : [ − a , a ] → C une fonction continue par morceaux.

Quel est l'intégrale de 0 ?

Intégrale et primitives

L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.

Est-ce que 0 est intégrable ?

la fonction f définie sur R par f(x)=1/x f ( x ) = 1 / x si x≠0 x ≠ 0 et f(0)=0 f ( 0 ) = 0 n'est pas intégrable en 0. Elle n'est donc pas localement intégrable.

Comment justifier l'existence d'une intégrale ?

Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.

Est-ce que la fonction nulle est continue ?

Une fonction réelle f est nulle part continue si son extension hyperréelle naturelle a la propriété que chaque x est infiniment proche d'un y tel que la différence f(x) − f(y) est appréciable (c'est-à-dire non infinitésimale ).

Si l'intégrale d'une fonction continue de signe constant est nulle alors elle est nulle

Trouvé 26 questions connexes

Est-ce que la fonction nulle est dérivable ?

En mathématiques, une fonction continue nulle part dérivable est une fonction numérique qui est régulière du point de vue topologique (c'est-à-dire continue) mais ne l'est pas du tout du point de vue du calcul différentiel (c'est-à-dire qu'elle n'est dérivable en aucun point).

Comment montrer qu'une fonction n'est pas nulle ?

Si pour une valeur donnée de x, vous trouvez f(x) != 0, vous avez démontré que f(x) n'est pas la fonction nulle, mais dans le cas contraire, c'est moins évident.

Comment montrer la continuité d'une intégrale ?

Théorème de continuité sous l'intégrale: Soient I et J deux intervalles de R et f une fonction définie sur I × J vérifiant: 1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3.

Comment montrer que l'intégrale est dérivable ?

Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .

Quelle est la différence entre une primitive et une intégrale ?

La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).

Pourquoi l'intégrale d'une fonction impaire est nulle ?

Si la fonction f est impaire, sa courbe représentative est symétrique par rapport à l'origine. L'intégrale entre a et -a est nulle car l'aire comprise entre -a et 0 aura un signe moins alors que celle entre 0 et a aura la même valeur mais avec un signe +.

Est-ce qu'une fonction intégrable est continue ?

Critères d'intégrabilité

Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.

Pourquoi 1 fois 0 est égal à 0 ?

0 est le nombre d'une quantité vide, le "rien" dont vous parlez. C'est donc quand on ajoute une quantité vide que la quantité de départ reste la même, et c'est précisément le cas : quand on ajoute 0 à un nombre quelconque, on ne change pas ce nombre. Pourquoi une multiplication par 0 donne-t-elle 0 ?

Comment comprendre l'intégrale ?

L'intégrale définie de la fonction 𝑓 ( 𝑥 ) entre 𝑥 = 𝑎 et 𝑥 = 𝑏 peut être interprété comme étant l'aire algébrique sous la courbe représentative de 𝑓 ( 𝑥 ) entre 𝑥 = 𝑎 et 𝑥 = 𝑏 ; on donne une représentation graphique d'une intégrale sur la figure ci-dessous.

Comment expliquer une intégrale ?

Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé intégration. Une intégrale est donc composée d'un intégrande (la fonction à intégrer) et d'un opérateur que l'on appelle intégrateur (le ∫ ).

Comment interpréter une intégrale ?

Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.

Est-ce qu'une intégrale est toujours positive ?

On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.

Comment savoir si c'est dérivable ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).

Quelle est la dérivée d'une intégrale ?

Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.

Comment montrer la continuité d'une fonction en 0 ?

Soit la fonction f définie par f(x) = si x ≠ 0, et f(0) = 1. Donc la fonction f est continue en 0.

Comment savoir si une intégrale est généralisée ?

Dans ce cas, on note ∫+∞af(t)dt ∫ a + ∞ f ( t ) d t ou ∫+∞af ∫ a + ∞ f cette limite. Une telle intégrale est alors appelée intégrale généralisée ou intégrale impropre. Soit f:[a,b[→K f : [ a , b [ → K continue par morceaux avec a,b∈R a , b ∈ R .

Comment savoir si une intégrale converge ou diverge ?

Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.

Comment montrer qu'une intégrale est décroissante ?

Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.

Quand une fonction n'est pas dérivable ?

Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue. Pour cet exemple, la solution la plus efficace aurait ainsi été de montrer d'abord que la fonction n'était pas continue et donc pas dérivable.

C'est quoi une fonction identiquement nulle ?

nul de F est la fonction identiquement nulle : ∀x ∈ R, f0(x) = 0. Les solutions de l'équation différentielle y + y = 0 sont y(x) = λcos(x)+ µsin(x), λ, µ ∈ R. C'est le sous-espace vectoriel de F engendré par les fonctions x ↦→ cos(x) et x ↦→ sin(x). avec a0,a1,...,an ∈ K.