Les tests F sont couramment utilisés pour étudier les cas suivants: L'hypothèse que les moyennes de différents ensembles de données dont la distribution suit une loi normale, ayant tous le même écart-type, sont égales. Il s'agit du test F le plus connu et il joue un rôle important dans l'analyse de la variance (ANOVA).
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Le résultat noté F. La signification notée p : cette valeur, obtenue grâce aux données ddl et F, constitue le rapport de variance qui confirme ou qui infirme l'hypothèse testée. Si la valeur de p est inférieure à 0,05, l'hypothèse nulle, selon laquelle les moyennes sont égales, peut être vraisemblablement rejetée.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.
Le test F est utilisé dans le processus d'ANOVA pour tester la différence entre les moyennes ou l'égalité de la variance. L'ANOVA sépare la variabilité intra-échantillon de la variabilité inter-échantillons. Le test F est le rapport de l'erreur quadratique moyenne de ces deux échantillons.
La valeur F est une statistique importante dans l'ANOVA qui est utilisée pour déterminer s'il existe des différences significatives entre les moyennes de deux groupes ou plus. Il est calculé en divisant le carré moyen entre les groupes par le carré moyen au sein des groupes.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Des recherches récentes montrent qu'un test statistiquement significatif ne correspond à une évidence forte que pour une valeur p de 0,5 % ou même 0,1 %.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Si la répartition de l'échantillon ou de la distribution est symétrique autour de la moyenne alors le coefficient est nul. Si la valeur est positive, l'étalement est à droite (asymétrique gauche), en revanche si elle est négative alors l'étalement est à gauche (asymétrie droite).
On obtient une p-value que l'on compare avec 0,05 (ou tout autre seuil). Si elle est supérieure, on ne rejette pas H0. En cas de variances parfaitement égales, TEST. F donne 1 ; en revanche, plus les variances sont dissemblables, plus la p-value tend vers zéro.
La corrélation de Spearman est une mesure de corrélation qui mesure une relation de monotonie entre deux variables à partir du rang des données. Un exemple de détermination du rang des données est : [58,70,40] devient [2,1,3]. On utilise souvent la corrélation de Spearman pour des données constituées d'outliers.
Le test du Chi2 consiste à mesurer l'écart entre une situation observée et une situation théorique et d'en déduire l'existence et l'intensité d'une liaison mathématique. Par exemple, en théorie il y a autant de chance d'obtenir « pile » que « face » au lancer d'une pièce de monnaie, en pratique il n'en est rien.
Le test le plus utilisé pour tester la liaison entre une variable quantitative et une variable qualitative à deux (2) modalités est le test de Student (alternative test de Man-Withney).
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Interpréter les résultats d'un test de Kruskal-Wallis
La p-value nous indique que la probabilité de rejeter l'hypothèse nulle alors qu'elle serait vraie est inférieure à 0.0005. Dans ce cas, on peut rejeter en toute confiance l'hypothèse nulle d'absence de différence significative entre les fromages.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
La force a pour équation aux dimensions : [F] = M × L × T. L'unité de mesure (SI) d'une force est le newton, symbole N, en hommage au savant Isaac Newton.
Si les variances des deux groupes sont inégales, la probabilité de commettre une erreur de type I (i.e. rejeter l'hypothèse nulle alors qu'elle est vraie) est supérieure au seuil α. La robustesse du test de t augmente avec la taille de l'échantillon et est supérieure lorsque les groupes sont de même taille.