Le test t est un test d'hypothèse statistique utilisé pour comparer les moyennes de deux groupes de population. L'ANOVA est une technique d'observation utilisée pour comparer les moyennes de plus de deux groupes de population. Les tests t sont utilisés à des fins de test d'hypothèses pures.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
L'analyse de la variance (ANOVA) peut déterminer si les moyennes de trois groupes ou plus sont différentes. ANOVA utilise des tests F pour tester statistiquement l'égalité des moyennes.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
L'analyse de variance permet simplement de répondre à la question de savoir si tous les échantillons suivent une même loi normale. Dans le cas où l'on rejette l'hypothèse nulle, cette analyse ne permet pas de savoir quels sont les échantillons qui s'écartent de cette loi.
Le test exact de Fisher calcule la probabilité d'obtenir les données observées (en utilisant une distribution hypergéométrique) ainsi que les probabilités d'obtenir tous les jeux de données encore plus extrêmes sous l'hypothèse nulle. Ces probabilités sont utilisées pour calculer la p-value.
TEST DE CORRÉLATION DE PEARSON
Il est utilisé pour étudier l'association entre un facteur d'étude et une variable de réponse quantitative, il mesure le degré d'association entre deux variables en prenant des valeurs entre -1 et 1. Des valeurs proches de 1 indiqueront une forte association linéaire positive.
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Pour savoir si la distribution des réponses de deux variables qualitatives est due au hasard ou si elle révèle une liaison entre elles, on utilise généralement le test du Khi2 dit «Khi-deux».
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Analyse de la variance (ANOVA) est une formule statistique utilisée pour comparer les variances entre la ou les moyennes de différents groupes. Elle est utilisée dans de nombreux scénarios pour déterminer s'il existe une différence entre les moyennes de différents groupes.
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Le test des rangs signés de Wilcoxon sur échantillons appariés est une alternative non paramétrique au test t sur échantillons appariés pour comparer les données appariés. Il est utilisé lorsque les données ne sont pas distribuées normalement.
Ce test est souvent utilisé pour valider l'hypothèse de leur égalité (appelée homoscédasticité1). La comparaison des variances s'avère donc utile comme test complémentaire lorsqu'on souhaite tester l'égalité de deux moyennes (cas des petits échantillons indépendants).
Ouvrir XLSTAT. Sélectionner la commande XLSTAT / Modélisation / Analyse de la Variance (ANOVA). Une fois le bouton cliqué, la boîte de dialogue correspondant à l'ANOVA apparaît. Sélectionner les données sur la feuille Excel.
D'une part car les données sont complexes à organiser entre elles, d'autre part en raison de leur volume. Il est nécessaire de simplifier. L'analyse factorielle permet de réduire le nombre de variables, pour mettre en évidence et hiérarchiser les seuls facteurs qui provoquent de la variance de manière significative.
Le test de corrélation de Kendall et celui de Spearman est recommandé lorsque les variables ne suivent pas une loi normale. Si vos données contiennent des valeurs manquantes, utiliser le code R suivant qui va gérer automatiquement les valeurs manquantes en supprimant la paire de valeurs.
Les indicateurs pour l'analyse de système de mesure des variables qualitative. Un fort « accord » correspond au cas où les mesures prises à plusieurs reprises par un opérateur donné pour le même objet (produit, unité, pièce ou échantillon, en fonction du domaine d'application) sont cohérentes.
Un des tests permettant de vérifier la normalité de la variable x est le test de Shapiro-Wilk. Il est appliquable pour des échantillons allant jusqu'à 50 valeurs. Il utilise le rapport de deux estimations de la variance.