L'équation cartésienne d'une droite est de la forme ax + by + c = 0 avec a, b et c ∈ℝ et au moins l'un des nombres a et b non nul.
Pour déterminer une équation cartésienne d'un plan passant par A et de vecteur normal \vec{n}, on peut : donner la forme générale de l'équation : ax + by + cz + d = 0 ; remplacer les coefficients a, b, c par les coordonnées du vecteur \vec{n} ; déterminer ensuite la valeur de d à l'aide des coordonnées du point A.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Trouver l'équation d'une droite
Exemple : Déterminer l'équation de la droite (AB) qui pasees par les points A(-2 ; 9) et B(1 ; 3). Méthode : Les points A et B n'ont pas la même abscisse. * L'équation de la droite est de la forme y = ax + b. (Il faut déterminer a et b).
Formule. La formule pour calculer la pente m d'une droite qui passe par les points P(x1, y1) et Q(x2, y2) est : m=∆y∆x = y2 – y1x2 – x1, où ∆y représente la variation des ordonnées et ∆x représente la variation des abscisses.
L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D'abord déterminer un vecteur normal au plan Ensuite déterminer d . une valeur pour cette variable et on en déduit les deux autres .
1) On cherche un vecteur →n(a;b;c) normal au plan. 2) On déduit qu'une équation cartésienne du plan est ax+by+cz+d=0. 3) Pour trouver d, on cherche un point A du plan et on remplace x, y et z par les coordonnées de A.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Cette propriété permet de caractériser en tant que droite l'ensemble des points M(x,y) vérifiant une égalité du type ax + by + c = 0 avec (a,b) ≠ (0,0) et, de plus, permet de déterminer un vecteur directeur de cette droite.
D'après un théorème du cours, si ax + by + c = 0 est une équation cartésienne d'une droite (d), alors le vecteur est un vecteur directeur de (d) ; à l'aide du vecteur directeur , placer un second point de la droite à partir du point A ; relier les deux points pour obtenir la droite souhaitée.
On appelle forme algébrique (ou cartésienne) d'un nombre complexe z = (x, y) l'expression z = x +jy. si x = 0, alors z = jy est un nombre imaginaire pur: z ∈I L'ensemble des nombres imaginaires purs se note I.
L'équation de la trajectoire est l'équation qui permet de connaître les positions de la bille sans faire intervenir le temps, c'est-à-dire connaître si on connaît , et inversement. L'équation de la trajectoire s'obtient donc en éliminant la coordonnée temporelle (c'est-à-dire ).
Comment déterminer la représentation paramétrique d'un plan ? Pour déterminer la représentation paramétrique d'un plan, nous devons avoir les coordonnées de trois points du plan, ou d'un point du plan et deux vecteurs directeurs. Ensuite, il faut remplacer les valeurs pertinentes dans une formule.
Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t′. Pour passer d'une équation paramétrique à une équation cartésienne d'un plan, on fait disparaitre les t et les t′ de la paramétrisation par des combinaisons.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
Le coefficient directeur de (D) est connu lorsque l'équation de (D) est mise sous la forme y = mx + p appelée équation réduite de (D).
Définition : Équation cartésienne d'un plan
L'équation cartésienne d'un plan dans ℝ est 𝑎 𝑥 + 𝑏 𝑦 + 𝑐 𝑧 + 𝑑 = 0 , où 𝑎 , 𝑏 et 𝑐 sont les composantes du vecteur normal ⃑ 𝑛 = ( 𝑎 , 𝑏 , 𝑐 ) qui est orthogonal au plan ou à tout vecteur directeur du plan.
Il suffit de prendre un vecteur colinéaire à pour obtenir une autre représentation paramétrique. Une équation paramétrique du plan P passant par A (1 ; 2 ; 3) et de vecteurs directeurs (1 ; 0 ; 1) et (1 ; 2 ; 5) est avec t et t' ∈ . La représentation paramétrique d'une droite est .
Tout plan P de l'espace admet une équation de la forme ax +by +cz = d avec (a; b ; c) = (0; 0; 0) • Si (a; b ; c) = (0; 0; 0) alors l'ensemble des points M de coordonnées (x ; y ; z) vérifiant ax +by +cz = d est un plan.
Déterminez la pente avec deux points.
Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
Comment effectuer le calcul de l'angle ? L'angle de la pente (mesuré en degrés) sert à déterminer une inclinaison. Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré.
Celle-ci se calcule comme suit : Différence de hauteur en cm divisée par la longueur du parcours en cm. En multipliant cette valeur par 100, on obtient la pente en pourcentage.