2,64575 est la racine carré de 7!
Calculer le carré d'un nombre est relativement simple : il suffit de multiplier le nombre par lui-même.
Par exemple, la racine carrée de 9 est 3 parce que 3 × 3 = 9. On note formellement : √9 = 3.
√8=2√2 car (2√2)2 = 2√2 × 2 √2 = 4(√2)2 = 4 × 2 = 8. Pour cet exemple, 8 n'est pas un carré parfait car 2√2 /∈ N. Voyons quelles sont les propriétés vérifiées par la racine carrée.
La racine carrée de cinq, notée √5 ou 51/2, est un nombre réel remarquable en mathématiques et valant approximativement 2,236.
La racine carrée de trois, notée √3 ou 31/2, est en mathématiques le nombre réel positif dont le carré est 3 exactement. Il vaut approximativement 1,732.
2) EXPLICATION DU CUBE D'UN NOMBRE
L'exposant 3 qui apparaît en haut à gauche du nombre 7 indique que ce nombre doit être multiplié deux fois par lui-même : 7 x 7 x 7 Le résultat est 147. Des nombres au carré peuvent s'additionner avec d'autres nombres au carré ou avec des nombres au cube, et vice versa.
La racine quatrième de 81, notée 4√81 est 3 car 34=81. 3 4 = 81.
4 au carré est égal à 16.
Le symbole de la racine carrée est √. Exemple : la racine carré de 4, qui s'écrit aussi √4 est égal à 2 car 22, soit 2 x 2 = 4.
racine carrée de 100 =
= 10.
√2 vaut approximativement 1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737. Pour plus de décimales, voir la suite A002193 de l'OEIS. Le calcul d'une valeur approchée de √2 a été un problème mathématique pendant des siècles.
Le triple de 4 est : 4 × 3 = 12.
Le cube de 5 est 125, soit : 5³ = 5 × 5 × 5 = 125.
La racine carrée de 49 est 7, car 7 x 7 = 49.
Par exemple dans l'anneau ℤ/9ℤ, les racines carrées de 0 sont 0, 3 et -3, et dans le corps gauche des quaternions, tout réel strictement négatif possède une infinité de racines carrées. Dans le cas des nombres réels, un auteur parlant d'une racine carrée de 2, traite d'un des deux éléments √2 ou bien -√2.
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, … 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, …
Le nombre 0, qui est le carré du nombre naturel 0, n'est pas un nombre carré. La suite des carrés des nombres naturels est : 0, 1, 4, 9, 16, …, n² où n désigne le nombre naturel de rang (n – 1).
Factorisez 16 16 à partir de 80 80 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical. Le résultat peut être affiché en différentes formes.
Ici, la racine de 121 est égale à 11. Donc la racine carrée de 121 est un nombre entier, et par conséquent 121 est un carré parfait. Par conséquent, 11 est la racine carrée de 121.