Le nombre 1,3 x est appelé « l'image de x par la fonction f ». On note f(x) cette image, on lit « f de x » et on écrit f(x) = 1,3 x. La fonction linéaire f traduit une situation de proportionnalité et le nombre 1,3 est appelé le coefficient de f.
La fonction f est définie par f(x) = − 0,5x. Le point A a pour coordonnées (1 ; 2), donc f(1) = 2. Divise l'image par son antécédent pour calculer le coefficient. Il est égal à \frac{2}{1} = 2.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f. On écrit aussi : soit f définie par f(x) = ax. f est une fonction et x est le nombre dont on cherche l'image par f.
La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.
But : trouver les coefficients p et d. Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
Le nombre par lequel on multiplie les valeurs d'une des grandeurs pour obtenir l'autre est appelé « coefficient de proportionnalité ». Dans l'exemple précédent, pour savoir combien coûtent 3 croissants, on multiplie le nombre de croissants, soit 3, par le prix d'un croissant, soit 1,02 €.
Un coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s'applique à une grandeur variable (grandeur physique ou variable mathématique).
Où trouver le coefficient de salaire ? Le coefficient de salaire doit obligatoirement figurer sur la fiche de paie de chaque salarié et sur son contrat de travail.
QU'EST-CE QU'UN COEFFICIENT DE PROPORTIONNALITÉ ? DÉFINITION – Coefficient de proportionnalité Deux grandeurs sont proportionnelles si les valeurs d'une des grandeurs s'obtiennent en multipliant toujours par un même nombre les valeurs de l'autre grandeur. Ce nombre est appelé coefficient de proportionnalité.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante. - Si le coefficient directeur est négatif alors la droite « descend ». On dit que la fonction affine associée est décroissante.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = –2. L'équation de la droite (d2) est donc : y = x – 2.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
Le coefficient directeur d'une droite
C'est un nombre qui caractérise la "pente" d'une droite.
Soient f une fonction définie sur un intervalle I et a ∈ I. Si f(a)= b, alors on dira que b est l'image de a par f et que a est un antécédent de b par f. L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.
coefficient n.m. Facteur appliqué à une grandeur quelconque ; pourcentage.
Si p/q est une racine rationnelle de A (avec p et q entiers premiers entre eux), alors p divise a0 et q divise an ; de plus, le quotient de la division de A par qX −p est `a coefficients entiers. Si A est un polynôme unitaire `a coefficients entiers, toute racine rationnelle de A est un entier.
Un coefficient (120 - 130 - 140...) qui renvoie à un indice de rémunération. Ce dernier est une composante du calcul du salaire de base : le coefficient le plus bas correspond à un statut employés/ouvriers ; le coefficient le plus élevé correspond à un statut cadre.