17 est un diviseur de 1360 car et 17 est un diviseur de 765 car donc 17 est un diviseur commun de 1360 et 765.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Dans cette division, 273 est le dividende et 17 le diviseur.
On peut décomposer 324 en produit de facteurs premiers pour aider : 324 = 22 × 34. Les diviseurs de 324 sont 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 27 ; 36 ; 54 ; 81 ; 108 ; 162 ; 324.
Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples. Par exemple, 12 = 12 × 1 donc 1 divise 12 et 12 est un multiple de ...
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
a) 220 : 1 = 220 220 : 2 = 110 220 : 4 = 55 220 : 5 = 44 220 : 10 = 22 220 : 11 = 20 Donc tous les diviseurs de 220 sont 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,et 220.
Les diviseurs de 51 sont : 1,3,17,51. Le seul diviseur commun est 1, donc 40 et 51 sont premiers entre eux. Définition 3 : Parmi les diviseurs communs à deux nombres et , le plus grand de ces diviseurs est appelé PGCD de et , noté PGCD( , ).
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
méthode 1 : avec les listes de diviseurs : diviseurs de 330 : 1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 11 ; 15 ; 22 ; 30 ; 33 ; 55 ; 66 ; 110 ;165 ; 330.
Par exemple : 378 ÷ 7 = 54 ; le reste de la division euclidienne de 378 par 7 est égal à 0, donc 7 est un diviseur de 378.
Exemple : − Les diviseurs de 18 sont 1, 2, 3, 6, 8, 9 et 18 et les diviseurs de 24 sont 1, 2, 3, 4, 6, 8, 12 et 24. − Les diviseurs communs à 18 et 24 sont donc : 1, 2, 3 et 6.