1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.
On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51. Remarque: Pour les grands nombres (supérieurs à 100 par exemple), l'algorithme d'Euclide est la méthode la plus rapide en général.
D'après la question 2, PGCD(224 ; 288) = 32.
D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
2) 756 441 n'est donc pas irréductible. On calcule le PGCD de 756 et 441 (ce sera un multiple de 3) ; il s'agit de 63.
il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5. Pour trouver le PGCD de 3 entiers, On cherche le PGCD de 2 d'entre eux, que l'on note D.
Rappel sur le PGCD
On a vu en classe de 3ème que le PGCD de deux nombres a et b est le plus grand nombre qui divise à la fois a et b. Par exemple, le PGCD de 15 et 10 est 5. Pour déterminer le PGCD de deux nombres, on peut faire une liste des diviseurs de a puis de b et déterminer le plus grand diviseur commun.
Le plus grand diviseur commun à 125 et 175 est 25.
PGCD (84 ; 270) = 6.
On dit que deux nombres sont premiers entre eux lorsqu'ils n'ont que 1 comme diviseur commun.
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
En effet : 252 = 1×252 = 2×126 = 3×84 = 4×63 = 6×42 = 7×36 = 9×28 = 12×21 = 14×18 b) Les diviseurs de 350 sont : 1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175 et 350. En effet : 350 = 1×350 = 2×175 = 5×70 = 7×50 = 10×35 = 14×25 c) Les diviseurs communs de 252 et 350 sont : 1, 2, 7 et 14.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
utilise le pgcd quand on s'occupe des diviseurs communs à ces nombres et qu'on est amené à chercher le plus grand de ces diviseurs. Le PGCD de différents nombres est un diviseur de chacun des nombres et est donc toujours inférieur ou égal à chacun des nombres.
162 = 2 × 81 = 2 × 9 × 9=2 × 32 × 32 = 2 × 34. 108 = 2 × 54 = 2 × 2 × 27 = 22 × 33. 2. Les diviseurs communs à 162 et 108 sont : 1 ; 2 ; 3 ; 6 ; 9 ; 18 ; 27 et 54.
Exemples. Trouver le PGCD de 28 et 42 : 1. Dresser la liste des diviseurs de chacun des nombres.
2/ PGCD (156; 130) = 26. Les diviseurs communs de deux nombres sont tous les diviseurs du plus grand commun diviseur (PGCD).
Méthode d'Euclide
La recherche du PGCD par la méthode des divisions euclidiennes est la conséquence du lemme d'Euclide. Lemme d'Euclide : soit un couple d'entiers naturels non nuls (a,b), si des entiers naturels q et r, avec r ≠ 0, sont tels que a = bq + r , alors : PGCD(a,b) = PGCD(b,r).
1. Les nombres 756 et 441 sont-il premiers entre eux ? Justifier. La somme des chiffres de 756 est 15 ; la somme des chiffres de 441 est 9 756 et 441 ne sont pas premiers entre eux car ils sont tous les deux divisibles par 3.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
Le plus grand de ces diviseurs est 18. On note : PGCD(72, 54) = 18.