Alors, puisqu'on sait que le plus grand commun diviseur de 240 et 400 est 80, cela veut dire que tu auras 80 bouquets.
Les facteurs communs pour 240,360 sont 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 15 , 20 , 24 , 30 , 40 , 60 , 120 .
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
Exemples. Trouver le PGCD de 28 et 42 : 1.
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Les facteurs communs pour 126,54 sont 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 . Le plus grand facteur commun des facteurs numériques 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 est 18 . Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site web.
Le plus grand commun diviseur à 162 et 108 est 54; le cuisinier peut donc préparer 54 barquettes.
PGCD ( 182 ; 78 ) = 26 Julie pourra faire 26 bouquets identiques.
4) Par conséquent, le PGCD de 168 et 86 est 2.
PGCD (364 ; 156) = 52
b/ Quel est le plus petit multiple commun à ces deux nombres ?
PGCD (2622 ; 2530) = PGCD (2530 ; 92) = PGCD (92 ; 46) = 46 car 46 est un diviseur de 92. Le chocolatier peut réaliser au maximum 46 paquets • 2622 46 = 57 et 2530 46 = 55 Chaque paquet sera composé de 57 œufs et de 55 poissons.
Indiquez tous les facteurs pour 72,120 pour déterminer les facteurs communs. Les facteurs communs pour 72,120 sont 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . Le plus grand facteur commun des facteurs numériques 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 est 24 .
Le PGCD est égal au dernier reste non nul : 27
Marc à 108 billes rouges et 135 noires.
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
288 et 224 ne sont pas premiers entre eux. Le PGCD est 32.
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
Le PGCD est le dernier reste non nul, c'est-à-dire PGCD(72 ;40)=8. Deux nombres a et b sont dits premiers entre eux si PGCD(a;b)=1. Si a et b sont premiers entre eux, alors la fraction a b est irréductible.
Donc PGCD(144 ; 252) = 36.
Les diviseurs de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions.
682 et 352 sont tous les deux des nombres pairs donc ils ne sont pas premiers entre eux. 2. Donc le PGCD de 682 et 352 est 22.