2. Calculer le PGCD de 36 et 60 à l'aide de l'algorithme des différences. Donc le PGCD de 60 et 36 est un diviseur de 24.
Plus grand diviseur commun
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Les diviseurs de 36 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 et 18. Les diviseurs communs à 24 et 36 sont donc 1 ; 2 ; 3 ; 4 ; 6 et 12.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
6 est le PGCD de 18 et 24.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
✓ Cherchons tous les autres diviseurs communs de 36 et 54. Les diviseurs de 36 sont : Les diviseurs de 54 sont : Donc les diviseurs communs à 36 et 54 sont : 1 ; 2 ; 3 ; 6 ; 9 et 18. ✓ Le PGCD de 36 et 54 est donc 18.
Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Le plus grand diviseur commun aux deux nombres est 90.
il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5. Pour trouver le PGCD de 3 entiers, On cherche le PGCD de 2 d'entre eux, que l'on note D.
Le plus grand de ces diviseurs est 18. On note : PGCD(72, 54) = 18.
Les facteurs communs de 36,48 sont 1,2,3,4,6,12 1 , 2 , 3 , 4 , 6 , 12 . Le PGCD des facteurs numériques 1,2,3,4,6,12 1 , 2 , 3 , 4 , 6 , 12 est 12 .
Un tel entier existe bien, et il en existe un seul vérifiant ces trois propriétés qui est le PGCD au sens de la définition précédente quand (a,b) ≠ (0,0). Avec cette définition PGCD(0,0)=0.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
PGCD (84 ; 270) = 6.
On dit que deux nombres sont premiers entre eux lorsqu'ils n'ont que 1 comme diviseur commun.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Méthode 2 : le tableau des diviseurs premiers
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
Nombres premiers entre eux : qu'est-ce que c'est ? Deux nombres entiers sont dits premiers entre eux lorsqu'il n'admette aucun diviseur commun, sinon l'unité.
Par exemple, 6 est le plus grand diviseur commun de 24 et 42, parce que 6 divise 24 (24/6 = 4, reste 0), 6 divise 42 (42/6 = 7, reste 0), et aucun nombre plus gran que 6 ne divise a la fois 24 et 42: 7 divise 42 mais pas 24, 8 divise 24 mais pas 42, 9 ne divise aucun des deux, ...
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
Diviseurs de 90 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90 (idem). Qu'est-ce que c'est ? Soient a et b deux entiers positifs. Le PGCD de a et b, noté pgcd(a; b), est le plus grand diviseur commun à a et à b (il divise a et b à la fois.)
PGCD (34 ; 51) = 17, donc les nombres 25 et 48 ne sont pas premiers entre eux. Une fraction est irréductible, si le PGCD du numérateur et du dénominateur est égal à 1.