Quel est le signe de f sur l'intervalle ?

Interrogée par: Dominique Renaud  |  Dernière mise à jour: 15. November 2024
Notation: 4.5 sur 5 (12 évaluations)

Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.

Quel est le sens de variation de f sur l'intervalle ?

Pour une fonction f dérivable sur un intervalle I, on a les théorèmes suivants : si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I.

Comment connaître le signe de f ?

Pour connaître le signe de f', il suffit simplement de déterminer les valeurs de x pour lesquelles f'(x) s'annule, or on sait construire le tableau de signe d'une fonction de type ax + b. f '(x) = 3x2 +6x -9 = 3(x+3)(x-1), x+3 = 0 --> x=-3 et x-1=0 --> x=1.

Comment déterminer le signe de f sur R ?

Déterminer le signe de f sur \mathbb{R}.
  1. Etape 1. Repérer les limites et extremums locaux dans le tableau de variations. ...
  2. Etape 2. Repérer les points où la fonction change de signe. ...
  3. Etape 3. Dresser un tableau de variations faisant apparaître les "0" ...
  4. Etape 4. Conclure sur le signe de la fonction.

Quel est le minimum de f sur l'intervalle ?

Soit f:I→R f : I → R une fonction définie sur un intervalle I et soit a∈I a ∈ I . On dit que f admet un maximum en a si, pour tout x∈I x ∈ I , f(x)≤f(a) f ( x ) ≤ f ( a ) . On dit que f admet un minimum en a si, pour tout x∈I x ∈ I , f(x)≥f(a) f ( x ) ≥ f ( a ) .

COMPRENDRE les intervalles

Trouvé 16 questions connexes

Comment montrer que f est croissante sur un intervalle ?

Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .

Comment trouver la valeur de F ?

On sait que f'(a) est égal au coefficient directeur de la tangente à Cf au point d'abscisse a. Or, la valeur de f'(0) est le coefficient directeur de la tangente à Cf au point d'abscisse 0.

Comment calculer le tableau de signe d'une fonction ?

Pour tracer un tableau de signes d'un produit de fonctions affines ( a x + b ) ( c x + d ) (ax+b)(cx+d) (ax+b)(cx+d), la marche à suivre est la suivante: Calculer la valeur qui annule a x + b ax+b ax+b.

Comment représenter la fonction f ?

La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.

Comment montrer que f est dérivable sur R ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .

Comment justifier qu'une fonction est positive sur un intervalle ?

Fonction positive, négative

On dit d'une fonction f qu'elle est positive sur un intervalle si, pour tout x dans cet intervalle, on a f(x) ≥ 0. La courbe représentative de la fonction est alors située au-dessus de l'axe horizontal, lorsqu'on se limite aux points dont l'abscisse appartient à l'intervalle considéré.

Quand F est positif ?

On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).

Quel est le signe d'une fonction ?

Définition : Signe d'une fonction

Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction 𝑓 ( 𝑥 ) sur un intervalle 𝐼 , le signe est positif si 𝑓 ( 𝑥 ) > 0 pour tout 𝑥 dans 𝐼 , le signe est négatif si 𝑓 ( 𝑥 ) < 0 pour tout 𝑥 dans 𝐼 .

Comment dresser un tableau de variation sur un intervalle ?

Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.

Comment savoir si la fonction est croissante ou décroissante ?

Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.

Comment s'appelle la fonction f ?

On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f.

Quel est le sens de variation d'une fonction ?

Une fonction est dite croissante si elle ne fait que croître sur un intervalle donné, c'est-à-dire que pour chaque paire de points de cet intervalle, le point de gauche a une valeur inférieure ou égale au point de droite. Une fonction est décroissante si elle ne fait que décroître sur cet intervalle.

Comment étudier les variations de la fonction f ?

Pour étudier le sens de variation d'une fonction f dérivable sur un intervalle [a ; b], il faut :
  1. Calculer sa dérivée f '(x).
  2. Déterminer le signe de f '(x) sur [a ; b] ; appliquer le théorème suivant : • lorsque la fonction dérivée f ' est positive sur un intervalle I, la fonction f. ...
  3. Dresser le tableau de variation de f.

C'est quoi un tableau de signe fonction ?

En mathématiques, un tableau de signes est un tableau à double entrée qui permet de déterminer le signe d'une expression algébrique factorisée, en appliquant la règle des signes et en facilitant l'organisation du raisonnement.

Quel est le signe d'une fonction affine ?

Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.

Comment trouver le sens de variation d'une fonction affine ?

Le sens de variation d'une fonction affine dépend du signe du coefficient directeur a a a. Ce coefficient directeur représente la « pente » de la droite représentative de f f f. Si a > 0 a > 0 a>0 la fonction est croissante, la droite « monte ». Si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale.

Quand f est croissante ?

f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).

Comment savoir si une fonction dérivée est positive ou négative ?

Si la fonction est croissante (respectivement décroissante) alors la dérivée est positive (respectivement négative).

C'est quoi dans l'ordre croissant ?

On peut donc ranger les nombres par ordre croissant (du plus petit au plus grand) ou par ordre décroissant (du plus grand au plus petit).

Comment écrire la fonction ?

Une fonction est une relation qui, à chaque valeur de la variable x, fait correspondre au plus une (0 ou 1) valeur de y. Pour exprimer que y dépend de x, on écrit : y = f(x).