Le symbole √ se nomme radical, ou racine. Par ailleurs, son appellation peut varier en fonction du nombre qui lui est associé. √x ou 2√x est la racine carrée du nombre x. x .
Racines de carrés parfaits : √0 = 0 √25 = 5 √100 = 10 √1 = 1 √36 = 6 √121 = 11 √4 = 2 √49 = 7 √144 = 12 √9 = 3 √64 = 8 √169 = 13 √16 = 4 √81 = 9 Remarque : √−5 = ?
√ Le caractère spécial « √ » représente : « symbole radical ou racine carrée ».
√π=7 .
A l'inverse, la racine carrée d'un nombre est le résultat dont le carré est égal au nombre de départ. Le symbole de la racine carrée est √. Exemple : la racine carré de 4, qui s'écrit aussi √4 est égal à 2 car 22, soit 2 x 2 = 4.
2,64575 est la racine carré de 7!
pi ou pis. Lettre grecque qui correspond au "p". Symbole définissant le rapport constant entre le périmètre d'un cercle et son diamètre. Il est égal à environ 3,1415926536.
On peut remarquer que √0=0, √1=1, √4=2, √9=3, √16=4, …
La racine carrée de cinq, notée √5 ou 51/2, est un nombre réel remarquable en mathématiques et valant approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique.
Allez à votre clavier et enfoncez la touche Alt. Tout en la maintenant, cliquez sur les touches 2, 5 et 1, dans cet ordre, qui se trouvent tout en haut de votre clavier, c'est alors que vous verrez se dessiner le symbole de racine carrée sur votre document de traitement de texte.
La racine carrée de trois, notée √3 ou 31/2, est en mathématiques le nombre réel positif dont le carré est 3 exactement. Il vaut approximativement 1,732.
La racine carrée de deux, notée √2 (ou parfois 21/2), est définie comme le seul nombre réel positif qui, lorsqu'il est multiplié par lui-même, donne le nombre 2, autrement dit √2 × √2 = 2. C'est un nombre irrationnel, dont une valeur approchée à 10–9 près est : √2 ≈ 1,414 213 562.
Il est établi que, pour tout nombre a et b, on a : √(a x b) = √(a) x √(b) X Source de recherche . Grâce à cette propriété, Il suffit de calculer les racines et de multiplier entre eux les résultats obtenus. Dans notre exemple, on calcule les racines de 25 et de 16, ce qui nous donne : √(25 x 16)
Pour plus de précision, la racine carrée de 16 est 4 du fait que 4 × 4 = 16.
En effet, 0²=0 et c'est le seul nombre qui a pour carré 0. La dernière équation n'admet aucune solution. Il n'existe aucun carré négatif.
Par exemple dans l'anneau ℤ/9ℤ, les racines carrées de 0 sont 0, 3 et -3, et dans le corps gauche des quaternions, tout réel strictement négatif possède une infinité de racines carrées. Dans le cas des nombres réels, un auteur parlant d'une racine carrée de 2, traite d'un des deux éléments √2 ou bien -√2.
Par exemple, la racine carrée de 20 est environ égale à 4,47213595499957939..., c'est-à-dire un nombre proche de 4 et demi. La racine carrée d'un entier qui n'est pas un carré parfait ne peut pas être mis sous la forme d'une fraction.
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)
Vous savez sans aucun doute que l'écriture décimale de la valeur approchée de Pi est environ égale à 3,1416, parfois même simplifiée à seulement 3,14. La valeur approchée de π avec ses premières décimales est : 3,14159265358979323846264338327950288419716939937510582.
Pi est égal à 3.14 car il s'agit du rapport entre la circonférence d'un cercle et son diamètre ou entre la superficie d'un cercle et le carré de son rayon. Dans les deux cas le chiffre obtenu lors du calcul de ce rapport est toujours constant, quelles que soient les dimensions du cercle.
La racine carrée de 49 est 7, car 7 x 7 = 49.
racine carrée de 144 =
= 12.
√45 = √9 × √5, soit √45 = 3 √5.