Deux unités sont généralement utilisées au lycée pour les angles : - le radian, de symbole rad, - et le degré, de symbole ° un petit rond mis en exposant. - et les secondes d'angle de symbole '' (une double apostrophe) 1 minute d'angle = 60 secondes d'angle et donc 1 degré = 60*60 = 3600 secondes d'angle.
L'angle nul, qui mesure 0°. L'angle plat, qui mesure 180°. L'angle plein, qui mesure 360°. L'angle saillant, qui mesure entre 0° et 180°.
Pour mesurer un angle, on utilise un rapporteur. La plupart des rapporteurs sont gradués en degré (°) avec une double graduation : de 0 à 180° de gauche à droite sur la graduation extérieure ; et de 0 à 180° de droite à gauche sur la graduation intérieure.
Définition Un angle nul est angle dont la mesure est égale à 0°. Définition Un angle aigu est un angle dont la mesure est comprise entre 0° et 90°. Remarque Un angle aigu peut toujours être contenu dans un angle droit. On peut ainsi vérifier la cohérence d'une mesure par rapport à l'angle donné.
Angle dont la mesure en degrés est égale à 360. Les demi-droites qui forment les côtés d'un angle plein forment deux demi-droites confondues.
Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés. Angle plat : Angle de 180 degrés.
Angle dans un plan dont la mesure en degrés est égale à 0.
Un angle se mesure avec un rapporteur. Le rapporteur mesure l'amplitude de l'angle en degré (0 à 360°). L'amplitude de l'angle est formé par l'écartement des 2 côtés de l'angle. Le radians (0 à ) est une autre unité de mesure d'un angle qui est plus utilisée à l'université.
360 degrés remonte aux Sumériens qui l'ont transmise aux Babyloniens. Elle dérive d'une division du jour en 12 et 360 parties, calquée sur une division idéale de l'année en 12 mois et 360 jours. La division sexagésimale du degré s'explique par le système de numération sexagésimale dont les Sumériens faisaient usage.
Angle de 60°: sextant.
Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré.
Notations d'un angle On note un angle à l'aide de trois lettres surmontées d'un chapeau. Ces trois lettres correspondent à trois points : le sommet et deux points situés sur chaque côté. La lettre centrale désigne toujours le sommet de l'angle.
Un angle est formé par deux demi-droites qui se coupent. Le point d'intersection de ces demies droites est le sommet de l'angle. On marque l'angle en dessinant un arc de cercle. Un angle est droit quand ses demies droites sont perpendiculaires.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Un angle aigu est un angle qui mesure moins de 90°. Un angle droit est un angle qui mesure 90°. Un angle obtus est un angle qui mesure plus de 90°.
Les premiers à avoir « inventé » les angles, ce sont probablement des Grecs ! Le mot « angle » est défini dans les Éléments d'Euclide, un livre qui résume une partie des connaissances en géométrie.
« Lorsqu'une droite tombant sur une droite fait les angles de suite égaux entre eux, chacun des angles égaux est droit. » Sur le site ASP (assistance scolaire personnalisée), la définition directement évoque la mesure de l'angle droit : Un angle droit est un angle de 90°. Ses deux côtés sont perpendiculaires.
Symboles. Le symbole utilisé pour désigner une mesure d'angle en degrés est « ° » placé immédiatement à la droite du nombre qui représente cette mesure.
La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°. La mesure d'un angle rentrant se situe entre 180° et 360°.
l'angle saillant est un angle inférieur à l'angle plat : l'angle obtus est compris entre 90° et 180°, l'angle aigu est compris entre 0° et 90°.
Pour tracer n'importe quel angle, avec une équerre, un mètre et une calculatrice, c'est possible. Pour cela, il suffit de calculer la tangente de la base du triangle rectangle. La tangente est le rapport de la base du triangle rectangle et le coté opposé.
On positionne le rapporteur en plaçant son centre sur le point O et le côté [Ox) sur la graduation 0. Puis on repère la position de la graduation souhaitée, ici 55°, avec un point. On retire le rapporteur et on trace la demi-droite [Oy) à l'aide d'une règle. On a ainsi construit un angle xÔy qui mesure 55°.