Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Définition : Un nombre premier est un nombre qui n'a que deux diviseurs : 1 et lui-même. Exemples : 12 n'est pas un nombre premier car il est divisible par 1, 2, 3, 4, 6, 12. 1 n'est pas un nombre premier car il admet un seul diviseur, lui-même.
2 est un nombre premier car il n'est divisible que par 1 (2 ÷ 1 = 2) et par lui-même (2 ÷ 2 = 1) ; 4 n'est pas un nombre premier car il admet 3 diviseurs : 1, 2 et 4 ; 123 n'est pas un nombre premier, car il est divisible par 3. La division de 123 par 3 donne un quotient de 41, sans reste.
Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Le nombre 123456789 n'est pas premier car il est divisible par 9 et par 3.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide. Il est le plus petit des entiers positifs ou nuls.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale.
Concernant 8, la réponse est : Non, 8 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 8) est la suivante : 1, 2, 4, 8. Pour que 8 soit un nombre premier, il aurait fallu que 8 ne soit divisible que par lui-même et par 1.
Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}. Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Concernant 25, la réponse est : Non, 25 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 25) est la suivante : 1, 5, 25. Pour que 25 soit un nombre premier, il aurait fallu que 25 ne soit divisible que par lui-même et par 1.
Concernant 23, la réponse est : oui, 23 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (23). Par conséquent, 23 n'est multiple que de 1 et 23.
La liste des premiers nombres premiers est : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, ...
Les nombres premiers sûrs sont : 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, etc.
Oui, 1 009 est un nombre premier. En effet, la définition d'un nombre premier est de n'être divisible que par deux entiers distincts, 1 et lui-même. Par diviseur, on entend que le reste de la division euclidienne du premier nombre par le second nombre est nul.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Et aucun autre. 2 est un nombre premier, car ses diviseurs sont 1 et 2. C'est d'ailleurs le seul nombre premier pair qui existe.
2 est le seul nombre premier pair. C'est le plus petit nombre premier. Il existe une infinité de nombre premiers. Pour déterminer les nombres premiers inférieurs à 100, on peut utiliser le crible d'Eratosthène.
En français, on utilise les chiffres arabes (0 à 9) et, dans certains contextes, les chiffres romains (I, V, X, L, C, D, M).
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Le zéro, tout comme les autres chiffres, n'ont pas été inventés ou découverts par les Arabes, mais par les Indiens. En revanche, ce sont les Arabes, excellents intermédiaires, qui ont diffusé ces chiffres dans toute l'Europe au cours du Xème siècle.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
On doit la suite de Fibonacci à Léonard de Pise, également connu sous le nom de Leonardo Fibonacci, né en 1175 et auteur de nombreux manuscrits mathématique d'importance.
Un nombre premier est un nombre qui n'a que 2 diviseurs, soit lui-même et 1. Par exemple, 2, 3, 5, 7, 11, 13, etc. sont des nombres premiers. Un nombre composé est un nombre qui a plus que deux diviseurs, donc tous les nombres qui ne sont pas premiers sont composés.