Deux variables quantitatives sont corrélées si elles tendent à varier l'une en fonction de l'autre. On parle de corrélation positive si elles tendent à varier dans le même sens, de corrélation négative si elles tendent à varier en sens contraire.
Pour savoir si la distribution des réponses de deux variables qualitatives est due au hasard ou si elle révèle une liaison entre elles, on utilise généralement le test du Khi2 dit «Khi-deux».
Le rapport de corrélation est un indicateur statistique qui mesure l'intensité de la liaison entre une variable quantitative et une variable qualitative.
Croiser une variable quantitative et une variable qualitative, c'est essayer de voir si les valeurs de la variable quantitative se répartissent différemment selon la catégorie d'appartenance de la variable qualitative. Cette syntaxe de boxplot utilise une nouvelle notation de type “formule”.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Ces tests hypothétiques liés aux différences sont classés en tests paramétriques et non paramétriques. Le test paramétrique en est un qui contient des informations sur le paramètre population. D'autre part, le test non paramétrique est un test pour lequel le chercheur n'a aucune idée du paramètre population.
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
La corrélation de Spearman est l'équivalent non-paramétrique de la corrélation de Pearson. Elle mesure le lien entre deux variables. Si les variables sont ordinales, discrètes ou qu'elles ne suivent pas une loi normale, on utilise la corrélation de Spearman.
Allez au menu Tests paramétriques / Tests t et z pour deux échantillons. Dans l'onglet Général faites les mêmes sélections de variable que pour le test précédent. Sélectionnez l'option Test t de Student comme nous ne connaissons pas la variance des deux populations.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Il existe deux stratégies pour prendre une décision en ce qui concerne un test d'hypothèse : la première stratégie fixe a priori la valeur du seuil de signification a et la seconde établit la valeur de la probabilité critique aobs a posteriori. et l'hypothèse H1 est acceptée.
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.
Le test des rangs signés de Wilcoxon sur échantillons appariés est une alternative non paramétrique au test t sur échantillons appariés pour comparer les données appariés. Il est utilisé lorsque les données ne sont pas distribuées normalement.
Dit plus simplement : si votre Khi2 se situe à gauche de la colonne 0,05, vous ne pouvez pas interpréter votre tableau sans prendre de risques. Remarquez que plus le degré de liberté diminue, plus les khi2 théoriques diminue.
Si la répartition de l'échantillon ou de la distribution est symétrique autour de la moyenne alors le coefficient est nul. Si la valeur est positive, l'étalement est à droite (asymétrique gauche), en revanche si elle est négative alors l'étalement est à gauche (asymétrie droite).
2. Le test de Mann-Whitney. le test de Mann-Whitney est l'alternative non paramétrique de t de Student pour deux échantillons indépendants. Lorsque la distribution des valeurs ne suit pas une loi normale, donc dissymétrique, le test t de student ne s'applique pas; il faut utiliser plutôt le test de Mann-Whitney.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Interprétation. Sachant que l'hypothèse nulle est que la population est normalement distribuée, si la p-value est inférieure à un niveau alpha choisi (par exemple 0.05), alors l'hypothèse nulle est rejetée (i.e. il est improbable d'obtenir de telles données en supposant qu'elles soient normalement distribuées).
Le test de corrélation est utilisé pour évaluer une association (dépendance) entre deux variables. Le calcul du coefficient de corrélation peut être effectué en utilisant différentes méthodes. Il existe la corrélation r de pearson, la corrélation tau de Kendall et le coefficient de corrélation rho de Spearman.