Théorème : Si dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés, alors ce triangle est rectangle et l'hypoténuse est le côté le plus long. Conclusion : ABC est un triangle rectangle.
Vous avez trois côtés : a, b, et c. C'est l'hypoténuse, et a et b sont les deux autres côtés. Écrivez l'équation du théorème de Pythagore : c² = a² + b². Cela signifie que la somme des carrés des deux côtés plus courts (a² + b²) est égale au carré du côté le plus long (c²).
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Le théorème de Pythagore s'applique aux triangles rectangles. Son principe : dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le plus grand côté) est égal à la somme des carrés des longueurs des deux autres côtés.
La réciproque du théorème de Pythagore consiste à dire que si le carré de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés, alors le triangle est rectangle.
Théorème de Pythagore — Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. En particulier, la longueur de l'hypoténuse est donc toujours supérieure à celle de chaque autre côté.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Théorème de Pythagore (Dans un triangle rectangle, pour calculer la longueur du 3° côté) : On rédigera : On sait que le triangle ABC est rectangle en A, AB = 3cm, BC = 5cm. Donc, d'après la propriété de Pythagore, BC2 = AB2 + AC2.
Il réalise ainsi que plusieurs outils en menuiserie, en architecture ou en dessin technique existent grâce à ce théorème et que les bâtisseurs de cathédrales l'utilisaient. Ensuite, l'élève est appelé à démontrer que Pythagore se retrouve facilement dans son milieu (école, maison, escalier, etc.).
D'une part, on a BC² = 12² = 144. D'autre part, on a AC² + AB² = 9² + 6² = 81 + 36 = 117. AC²+AB². Si le triangle était rectangle, d'après le théorème de Pythagore, on aurait l'égalité BC² = AC² + AB².
On va donc travailler dans le triangle BA M rectangle en M. Dans ce triangle, d'après la propriété de Pythagore, on a : A B2 = A M2 + MB|BM2 ; soit 25 = AM2 + 9 donc AM2 = 16 ; soit AM = 4. AMB est rectangle en M donc [AB] est l'hypoténuse et AB2 = AM2 + MB2.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Selon la légende, Thalès aurait découvert ce théorème en calculant la hauteur d'une pyramide. Pour se faire, le mathématicien calcule l'ombre de la pyramide au sol puis, avec l'aide d'un bâton, calcule également l'ombre du bâton. C'est ainsi qu'il aurait pu calculer les dimensions de la pyramide d'Egypte.
Théorème de Thalès (appliqué au triangle)
M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
À son retour, en l'honneur de cette annonce divine, Mnesarchus change le nom de sa femme en Pythais et baptise son fils Pythagoras, qui signifie littéralement "annoncé par la Pythie''.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Dans un triangle rectangle, le théorème de Pythagore permet de calculer la longueur d'un côté connaissant celle des deux autres. La réciproque du théorème de Pythagore et sa conséquence permettent de savoir si un triangle est rectangle ou non.
L'hypothèse du théorème de Pythagore appliqué à ce triangle est : le triangle ABC est rectangle en A. Sa conclusion est : BC2 = AB2 + AC2. En échangeant la conclusion et l'hypothèse, on obtient le théorème réciproque : si BC2 = AB2 + AC2, alors le triangle ABC est rectangle en A.
Si un triangle est rectangle, alors le carré de la mesure de son hypoténuse est égal à la somme des carrés des mesures des deux côtés de l'angle droit. Puisque le triangle ULM est rectangle en L, on a : c² = a² + b² , on peut aussi écrire : MU² = LU² + LM² .
Deux droites sont perpendiculaires si et seulement si le produit de leurs pentes est égal à -1. Autrement dit, si m1 et m2 sont les pentes de deux droites, alors elles sont perpendiculaires si m1 * m2 = -1. Dans cet exemple, m1 * m2 = 2 * (-1/2) = -1, ce qui signifie que les deux droites sont perpendiculaires.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Pythagore est bien connu pour le théorème de géométrie qui porte son nom : le théorème de Pythagore, qui a pour principe : "dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés".
RECIPROQUE DU ThEoreme de Pythagore : ▶ Soit ABC un triangle. Si BC² = BA² + AC² , alors ABC est un triangle rectangle en A.