La réciproque du théorème de Pythagore consiste à dire que si le carré de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés, alors le triangle est rectangle.
► La conséquence (contraposée) du théorème de Pythagore
Si le carré de la longueur du côté le plus grand d'un triangle n'est pas égal à la somme des carrés des deux autres côtés alors le triangle n'est pas rectangle.
Le théorème de Pythagore s'applique aux triangles rectangles. Son principe : dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le plus grand côté) est égal à la somme des carrés des longueurs des deux autres côtés.
Théorème de Pythagore — Si un triangle ABC est rectangle en C, alors AB2 = AC2 + BC2. Triangle ABC rectangle en C avec les notations AB = c, AC = b et BC = a. Par contraposée : Théorème — Si AB2 n'est pas égal à AC2 + BC2 alors le triangle n'est pas rectangle en C.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore (Dans un triangle rectangle, pour calculer la longueur du 3° côté) : On rédigera : On sait que le triangle ABC est rectangle en A, AB = 3cm, BC = 5cm. Donc, d'après la propriété de Pythagore, BC2 = AB2 + AC2.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A.
Il réalise ainsi que plusieurs outils en menuiserie, en architecture ou en dessin technique existent grâce à ce théorème et que les bâtisseurs de cathédrales l'utilisaient. Ensuite, l'élève est appelé à démontrer que Pythagore se retrouve facilement dans son milieu (école, maison, escalier, etc.).
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
La relation de Pythagore met en relation les trois côtés du triangle rectangle de la manière suivante : La somme des carrés des mesures des cathètes est égal au carré de la mesure de l'hypoténuse.
Si vous n'aviez la mesure que d'un seul côté, il faudrait vous débrouiller pour obtenir la mesure d'un autre côté sans quoi il ne serait pas possible d'utiliser le théorème de Pythagore. Si vous avez les angles, avec quelques fonctions trigonométriques, il est possible de calculer la longueur d'un côté.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
Deux droites sont perpendiculaires si et seulement si le produit de leurs pentes est égal à -1. Autrement dit, si m1 et m2 sont les pentes de deux droites, alors elles sont perpendiculaires si m1 * m2 = -1. Dans cet exemple, m1 * m2 = 2 * (-1/2) = -1, ce qui signifie que les deux droites sont perpendiculaires.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
À son retour, en l'honneur de cette annonce divine, Mnesarchus change le nom de sa femme en Pythais et baptise son fils Pythagoras, qui signifie littéralement "annoncé par la Pythie''.
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés". Le théorème de Pythagore permet de calculer la longueur d'un côté d'un triangle rectangle, à condition de connaitre la longueur des 2 autres côtés.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Le périmètre est le tour de la figure. Il faut donc additionner les longueurs des trois côtés pour obtenir le périmètre. La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé.
Le théorème de Pythagore
Si un triangle est rectangle, alors le carré de la mesure de son hypoténuse est égal à la somme des carrés des mesures des deux côtés de l'angle droit. Puisque le triangle ULM est rectangle en L, on a : c² = a² + b² , on peut aussi écrire : MU² = LU² + LM² .
Le théorème de Pythagore émane du célèbre philosophie et mathématicien grec, il y a 2 500 ans. Pourtant, l'assertion n'apparaît peut-être pas si évidente.