Exemple : (3x2)' = 3 × 2x = 6x.
La dérivée de x² est 2x, donc la dérivée de 2x² est 2 x 2x = 4x.
La dérivée de 2x est égale à 2.
La fonction considérée est f ( x ) = x 2 . Si h ≠ 0 , on peut simplifier par et obtenir T a ( h ) = 2 a + h . Lorsque tend vers 0, T a ( h ) se rapproche d'un nombre réel qui est . Nous avons donc démontré que pour tout réel , est dérivable en et f ′ ( a ) = 2 a .
'(x) = u'(x) + v'(x) = 6x + 2 x . Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I.
dérivée d'une parenthèse
On passe l'exposant devant, on reproduit la parenthèse avec l'exposant diminué de 1, puis on multiplie le tout par la dérivée du contenu de la parenthèse.
La dérivée d'une fonction contenant une racine carrée est toujours une fraction. Le numérateur de cette fraction est la dérivée du radicande.
La dérivée de 1 est nulle, car c'est une constante.
Graphiquement, la dérivée d'une fonction correspond à la pente de sa droite tangente en un point spécifique.
> +ℎ? prend des valeurs de plus en plus grandes. Donc f n'est pas dérivable en 0. Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.
Re : Dérivée = 0
Si une dérivée est nulle en tout point, c'est que la fonction est contante, c'est-à-dire que pour tout x, f(x)=k avec k un réel.
Le nombre dérivé au point x du produit u.v est égal à u(x) . v'(x) + u'(x) . v(x).
Méthode. Pour lire graphiquement le nombre dérivé de f en a, on lit le coefficient directeur de la tangente à la courbe au point d'abscisse a ou on le calcule avec la formule xB−xAyB−yA avec (AB) tangente en A à la courbe de f.
Lorsque pour tous a et b de l'intervalle, les images de a et de b sont rangés dans l'ordre inverse de a et b, on dit que la fonction est décroissante sur l'intervalle considéré. On considère donc deux nombres a et b non nuls et de même signe et on calcule la différence entre les inverses.
La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.
La notation f′ (qui se lit f prime ) pour désigner la dérivée de la fonction f est due au mathématicien français Lagrange (1736 - 1813). Cette notation est la plus usuelle et la plus simple si la fonction étudiée est une fonction d'une seule variable.
Soit h un nombre réel tel que a + h a+h a+h appartienne à I. On dit que f est dérivable en a si le taux d'accroissement de f en a admet pour limite un nombre réel lorsque h tend vers zéro. Ce nombre, noté f ′ ( a ) f'(a) f′(a) est appelé nombre dérivé de f en a.
Le coefficient directeur de la droite (AB) est égal à : f (b) − f (a) b− a . égal à : f (a + h) − f (a) a + h − a = f (a + h) − f (a) h . tend vers 0. Ce coefficient directeur s'appelle le nombre dérivé de f en a.
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une flèche qui monte dans la deuxième ligne du tableau lorsque f est croissante et une flèche qui descend lorsque f est décroissante.
Démonstration : La fonction f =1/u est la composée de deux fonctions la fonction u suivie de la fonction inverse. La fonction inverse est définie et dérivable sur chaque intervalle ]-∞ ;0[ et ]0 ;+∞[ , donc la fonction composée f est définie et dérivable sur les intervalles ou la fonction u est dérivable et non nulle.
On multiplie par l'exposant n et on diminue la puissance de 1.
Utilisation de la formule
On remplace h par zéro. On obtient 4 donc f'(2)=4.
Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.