Toute racine de 1 est 1 .
Les élèves de 3ème savent bien que la racine carrée de -1 n'existe pas.
En 1833, Hamilton cherche à donner une légitimité à l'écriture √–1 en définissant ce que serait la mesure principale du logarithme d'un complexe, puis de sa racine n-ième et démontre que (0, 1) correspond alors bien à la mesure principale de √–1.
cos(π), on est bien de l'autre coté, π c'est cet angle ici, donc le cosinus vaut -1. sinus de π, sin(π) ça vaut 0, donc ça fait bien -1 ! Et donc on a montré que i^2 est égal à -1.
Pour obtenir le carré d'un nombre, il suffit de multiplier ce nombre par lui même.
( 10 exposant zéro = 1) Merci!
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
1 (un) est l'entier naturel représentant une entité seule. « Un » fait quelquefois référence à l'unité, et « unitaire » est quelquefois utilisé comme un adjectif dans ce sens (par exemple, un segment de longueur unitaire est un segment de longueur 1).
Personnalité : Le nombre 1 est lié à un fort esprit de décision et d'initiative, il est le début de quelque chose, l'énergie qui engendre la création. Vous avez donc sans doute une bonne capacité à diriger et cela de façon très naturelle.
racine carrée de 3 =
= 1,7.
Si on travaille avec des nombres (cadre numérique), il est facile de distinguer les nombres positifs et les nombres négatifs. En effet la présence d'un signe « + » ou l'absence de signe indique qu'il est positif. La présence d'un signe « - » indique qu'il est négatif.
Le nombre i prend naissance suite à la recherche de solutions non réelles pour des équations du troisième degré, des équations polynomiales avec une racine cubique. En 1637, le philosophe Français René Descartes (1595-1650) baptise ces valeurs impossibles des nombres imaginaires.
On en tire les valeurs suivantes de √2 : √2 = 1/5 × [7 ; 14, 14, 14…], √2 = 1/29 × [41 ; 82, 82, 82…].
Une obtention de décimales par la méthode de Newton a été illustrée en 1922, concluant que √7 vaut 2,646 « au millième près ».
Dans C, la racine carrée de 100 est 10ou —10.
Habituellement, le chiffre 6 est celui qui est associé à l'idée de l'amour, mais aussi de la beauté et de la famille. Si ce chiffre est associé au 9, c'est un très bon signe, qui peut annoncer une grande nouvelle, telle qu'une naissance, un mariage ou la concrétisation d'un projet à deux.
Contrairement au 12, certains nombres ne possèdent que 2 diviseurs, à savoir 1 et lui-même. Ce sont des nombres premiers. Exemple : 13 est un nombre premier, car il a pour diviseur 1 et 13.
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Sans surprise, c'est le 7, considéré par beaucoup comme un chiffre magique ou chanceux, qui a remporté le suffrage. 7, comme dans les sept péchés capitaux, les sept jours de la semaine, le septième ciel, les sept merveilles du monde, les sept couleurs de l'arc-en-ciel…
En fait, la seule exception est le nombre zéro lui-même. Lorsqu'un nombre non nul est élevé à la puissance zéro, le résultat est toujours égal à un. Cette règle découle des propriétés fondamentales de l'exponentiation. Lorsque nous multiplions des nombres ayant la même base, nous additionnons leurs exposants.
Tout nombre élevé à la puissance zéro est égal à . Par exemple, 7 0 = 1 .
Pourquoi 0 puissance 0 est égal à 1 ? Tout nombre non nul élevé à la puissance 0 donne 1 par convention. Mais 0^0 est une forme indéterminée. Par exemple la limite de x^x est de la forme 0^0 quand x→0 (sans atteindre 0).