Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
C'est un nombre qui permet d'exprimer « la taille » de cette surface. Pour calculer l'aire de figures géométriques, il faut utiliser des formules. La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2.
Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2.
L'aire du triangle calcul
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
Un triangle rectangle correspond à la représentation de la moitié d'un rectangle. Pour calculer l'aire ou la surface de ce triangle rectangle, il suffit donc de calculer l'aire du rectangle (longueur L fois largeur l) et de diviser la valeur obtenue par 2.
L'aire d'un triangle est égale au produit de la longueur d'un côté du triangle (base relative b) par sa hauteur h relative divisé par 2. Aire (ABC) = (base × hauteur) ÷ 2 = (b × h) ÷ 2.
L ' aire d'un triangle isocèle est égale au produit de la longueur de la base par la longueur de la hauteur (issue de la base). Remarque : les longueurs doivent être exprimées dans la même unité de longueur.
L'aire A d'un trapèze dont les bases sont b et B et dont la hauteur est h est : A=(B+b)×h2.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
Pour un triangle rectangle dont l'on nomme les côtés A, B et C, cela donne la formule : A² + B² = C².
Les formules du secteur circulaire sont les suivantes: si l'angle est alpha, l'aire est A = pi * r ^ 2 * (alpha/360°) et la longueur de l'arc est b = 2 * pi * r * (alpha/360°).
On appelle « aire d'une figure fermée » le nombre de carrés (de coté 1 unité de longueur) nécessaire pour la remplir complètement : Exemple : Chaque petit carré mesure 1cm de coté, on dit que son aire est 1 cm carré (noté 1 cm²). La figure est composée de 9 carrés de ce type, on dit que son aire est 9 cm².
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c2 = a2 + b2, où c est l'hypoténuse (le côté opposé à l'angle droit). Inversez le théorème pour résoudre a2 , c'est-à-dire a2 = c2 - b2 .
Si vous connaissez la base et l'aire d'un triangle, pour trouver sa hauteur, vous devez multiplier l'aire par 2 et diviser le résultat par la base. Pour trouver la hauteur d'un triangle équilatéral, utilisez le théorème de Pythagore, a^2 + b^2 = c^2.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
L'aire d'un losange est égale au produit des longueurs de ses diagonales.
En fin de compte : P = (L + l) × 2. Exemple : un rectangle mesure 6,5 cm de long sur 4 cm de large. Son périmètre est égal, en cm, à : (6,5 + 4) × 2 = 10,5 × 2 = 21.
La surface d'un triangle scalène est la moitié de la base multipliée par la hauteur du triangle.
Dans un triangle, les médiatrices des trois côtés sont concourantes en un point qui est le centre du cercle circonscrit de ce triangle. La médiatrice d'un segment est un axe de symétrie de ce segment.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.
Remarque L'hypoténuse est le côté le plus long du triangle. Théorème: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des c carrés des longueurs des deux autres côtés.