f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
On donne la courbe représentative d'une fonction trigonométrique. Il faut déterminer si son équation est de la forme y = asin(bx) + c ou de la forme y = acos(bx) + c et retrouver les valeurs de a, b et c.
f est une fonction linéaire donc son expression algébrique est f(x) = ax où a est le coefficient de cette fonction linéaire. On a donc f(2) = a×2 et on sait que f(2) = 7, d'où 2a = 7 donc a = 7 2 = 3,5 f est donc la fonction linéaire de coefficient 3,5.
Une expression algébrique est un ensemble de variables (lettres) et de nombres reliés entre eux par des symboles d'opération mathématique. Une expression algébrique est formée d'une ou plusieurs lettres appelées variables ainsi que d'un ou plusieurs nombres appelés coefficients ou constantes.
Une fonction polynôme de degré 2 f est définie sur ℝ par f (x) = ax2 + bx + c, où a, b et c sont des nombres réels donnés et a ≠ 0.
Une expression littérale est une expression comportant des nombres et des lettres. La formule 2 × (L + l) donne le périmètre d'un rectangle de longueur L et de largeur l. Une expression littérale est une expression comportant des nombres et des lettres.
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I. Remarques : pour le vocabulaire mathématique, "positive" signifie "positive ou nulle" (et "négative" veut dire "négative ou nulle").
Pour la tracer il est nécessaire de connaître deux points qui lui appartiennent. Le premier point que l'on choisit en général (car il ne nécessite pas de calcul) est le point d'abscisse nul, d'après la formule générale d'une fonction affine f(0) = a. 0 + b soit f(0) = b donc ses coordonnées sont (0;b).
Cas particuliers. Si b = 0, c'est-à-dire, f(x) = ax ; alors f est appelée fonction linéaire. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante.
La courbe représentative d'une fonction f est l'ensemble des points M(x;y) tels que f(x)=y et x∈Df. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1. Tracer une allure de la courbe représentative de f.
Une fonction affine est une fonction ayant pour structure ax + b dont l'inconnue X est un nombre réel et les données a et b, des nombres relatifs donnés. Le but étant alors de calculer l'inconnue X. La fonction affine peut être représentée par un graphique et notamment une ligne droite.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Définition et notations de fonctions affines
En associant à chaque nombre "x" un nombre "ax + b" appelé image de x, on définit une fonction affine f. On notera cette fonction f : x → ax + b . L'image de x sera notée f(x) .
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
l'image du nombre 10 est obtenue en calculant f(10) = 2x10 + 3 soit f(10) =23 donc l'image du nombre 10 par cette fonction f est 23.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Afin de simplifier les écritures littérales, on adoptera quelques conventions : 0 × x = 0, 1 × x = x et –1 × x = –x ; Le signe « × » est supprimé entre 2 lettres ou devant une lettre ; Exemples : 2 × b = 2b ou 3 × x × y = 3xy.
Ordonner une expression composée d'additions et/ou de soustractions de termes, c'est écrire les termes dans l'ordre décroissant des exposants des variables apparaissant dans l'expression.
Une fonction du second degré est une fonction qui peut s'écrire sous la forme 𝑓 ( 𝑥 ) = 𝑎 𝑥 + 𝑏 𝑥 + 𝑐 , où 𝑎 , 𝑏 et 𝑐 ∈ ℝ avec 𝑎 ≠ 0 . Le graphique d'une fonction du second degré est appelé une parabole en référence à sa forme.