L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
La pente a pour valeur 0. Lorsque x augmente de 1, y ni augmente, ni diminue. L'ordonnée à l'origine a pour valeur -4. Cette relation peut souvent être représentée par l'équation y = b 0 + b 1x, où b 0 désigne l'ordonnée à l'origine et b 1 la pente.
Dans un repère du plan, l'ordonnée d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe vertical. L'autre nombre est l'abscisse. Abscisse et ordonnée sont les coordonnées d'un point : on cite toujours l'abscisse avant l'ordonnée.
L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y. L'équation représente une droite dont la pente est 3 3 et dont l'ordonnée à l'origine est -4 4.
L'ordonnée est la coordonnée verticale d'un point dans un repère cartésien. Elle indique la distance entre ce point et l'axe horizontal. Pour représenter l'ordonnée d'un point, on utilise généralement la lettre « y ».
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
L'ordonnée à l'origine est l'ordonnée qui se lit à l'origine (quand l'abscisse vaut 0). Le coefficient directeur correspond à la pente de la droite.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Lecture des coordonnées d'un point du plan
Son abscisse est -5. Son ordonnée est 3.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées.
L'ordonnée à l'origine d'une fonction quadratique sous la forme canonique se calcule en remplaçant x par 0.
L'axe horizontal d'un plan cartésien se nomme l'axe des abscisses, ou l'axe des x . Cet axe gradué est orienté de la gauche vers la droite dans le plan cartésien. On y indique la valeur de la variable indépendante dans une relation entre deux variables.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Le coefficient directeur 𝑎 d'une droite passant par les points ( 𝑥 ; 𝑦 ) et ( 𝑥 ; 𝑦 ) est défini par 𝑎 = 𝑦 − 𝑦 𝑥 − 𝑥 . L'angle 𝛼 entre la droite et l'axe des abscisses est mesuré dans le sens trigonométrique.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Un repère orthogonal du plan est composé de deux droites graduées perpendiculaires et de même origine. L'une horizontale est appelée axe des abscisses et l'autre verticale est appelée axe des ordonnées.
L'ordonnée à l'origine est déterminée en traçant une droite de régression linéaire qui passe par les valeurs x et y connues. Utilisez la fonction ORDONNEE. ORIGINE pour déterminer la valeur de la variable dépendante lorsque la variable indépendante est égale à 0 (zéro).
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
un point qui est sur l'axe des abscisses a son ordonnée nulle.
Cours. x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A.