Les “technologies quantiques” regroupent les méthodes mises en œuvre pour produire des outils dont le fonctionnement repose de manière essentielle sur l'une des propriétés quantiques suivantes : la superposition quantique d'états d'un objet physique, ou l'intrication quantique de plusieurs sous-parties de cet objet.
En effet, de plus en plus de chercheurs et d'entreprises s'y intéressent et souhaitent expérimenter cette technologie. C'est notamment le cas de mastodontes comme IBM, Google ou Amazon Web Services (qui est actuellement en train de construire son propre ordinateur quantique à Pasadena).
théorie physique qui traite du comportement des objets physiques au niveau microscopique [atome, noyau, particules].
Ainsi, alors que l'ordinateur classique fonctionne avec des « bits », des informations stockées de manière binaire (avec des 0 et des 1), un ordinateur quantique fonctionne avec des « qubits », constitués de superpositions d'états entre 0 et 1.
De ces découvertes, qui forment la première révolution quantique, découlent un certain nombre d'applications encore utilisées aujourd'hui : les lasers, les circuits intégrés ou encore les transistors, à la base du fonctionnement des appareils électroniques notamment.
Un monde d'énergie
La physique quantique est une théorie physique par laquelle l'esprit influence la matière qui est faite d'électrons. Tout ce qui vous entoure est en fait constitué d'électrons qui sont à l'arrêt, une énergie ralentie qui vous donne l'impression qu'il s'agit d'une masse inerte.
L'objet quantique, c'est d'abord tout élément de la structure microscopique de la matière et du rayonnement : atomes, électrons, photons, etc. Et on peut dire que notre monde est quantique parce que la théorie des quanta nous a fourni plus de clés sur la structure de la matière que tout le reste de la science.
Des chercheurs de l'Université de sciences et technologie de Chine affirment que leur ordinateur quantique de 66 qubits baptisé Zuchongzhi 2 est 1 million de fois plus rapide que le Sycamore de Google et 10 millions de fois plus rapide que le superordinateur le plus puissant du monde.
Grâce au quantique, cette entreprise fabrique l'ordinateur du futur. La start-up française Pasqal, installée à Massy (Essonne), développe un processeur quantique capable d'accélérer les calculs des ordinateurs d'aujourd'hui. Après avoir vu le jour en 2019, Pasqal compte déjà 70 salariés.
Le processeur quantique Eagle d'IBM de 127 qubits est le plus puissant au monde. IBM a dévoilé son dernier et plus puissant processeur quantique, qui représente une avancée majeure dans le secteur de l'informatique quantique. Nommé Eagle, le processeur de 127 qubits est le premier de son genre à dépasser les 100 qubit.
L'esprit quantique ou encore la conscience quantique est une hypothèse qui suggère que des phénomènes quantiques, tels l'intrication et la superposition d'états, sont impliqués dans le fonctionnement du cerveau et en particulier, dans l'émergence de la conscience.
BIOGRAPHIE PAUL DIRAC - Le physicien et mathématicien Paul Dirac est célèbre pour ses théories sur la mécanique quantique. Prix Nobel de physique en 1933, c'est une des grandes figures de la physique du XXe siècle.
Contrairement à la médecine traditionnelle qui perçoit le corps humain comme une addition de plusieurs organes, la médecine quantique développe une approche plus holistique selon laquelle l'organisme serait composé de particules de lumière, appelées photons, qui dégagent un champ vibratoire.
IBM et l'institut Fraunhofer-Gesellschaft ont présenté le premier ordinateur quantique d'Europe. Il se nomme Quantum System One et a coûté 40 millions d'euros. Conçu en 2019, l'ordinateur Quantum System One est piloté par un processeur Falcon avec une vitesse pouvant atteindre 27 qubits.
Les ordinateurs classiques traitent de l'information binaire, des 1 et des 0. L'informatique quantique va plus loin, grâce aux qubits, qui peuvent être à la fois 1 et 0. Cette faculté est ce que l'on appelle la superposition, un des avantages premiers de l'informatique quantique.
Le qubit à ions piégés correspond à des orientations magnétiques d'ions, généralement de calcium, maintenus sous vide. Il fonctionne lui aussi à très basse température. Un laser sert à la mesure et exploite le phénomène de fluorescence des ions excités par le laser.
L'une des solutions pour créer un qubit consiste à élaborer un "point quantique" qui est fondamentalement un électron piégé dans une cage d'atomes, performance technique qui est aujourd'hui accessible aux laboratoires de Bell ou d'IBM par exemple qui peuvent manipuler des atomes individuellement.
La décohérence en est l'obstacle majeur : l'ordinateur quantique, pour calculer de manière bien plus rapide et efficace qu'un ordinateur classique, va utiliser la superposition et l'intrication d'états qui sont beaucoup plus sensibles à l'environnement que les états classiques.
IBM a présenté sa feuille de route pour atteindre de nouveaux sommets dans l'informatique quantique. Le géant américain veut développer des machines dotées d'une puissance de calcul comprise entre 10 000 et 100 000 qubits après 2026.
1982 : L'hypothèse de réaliser un ordinateur quantique est soulevé pour la première fois par Richard Feynman.
Vous pouvez trader ou investir dans les actions liées à l'informatique quantique. En investissant dans ce type d'actions avec le compte titres, vous achetez et devenez propriétaire des actions des sociétés impliquées dans l'informatique quantique.
Pour créer un ordinateur quantique, il nous faut utiliser notre compréhension classique afin d'établir et de contrôler un système quantique. Et ce n'est pas chose facile. Nous utilisons des signaux et des objets classiques et tentons de « donner vie » au comportement quantique dans ces matériaux.
Ma main est essentiellement du vide, et la table aussi. Pourquoi diable ma main ne peut-elle pas traverser la table ? Et ça, c'est dû au principe d'exclusion de Pauli et aux propriétés des électrons, des raisons très profondes de physique quantique.
Les objets quantiques sont donc définis par des probabilités. Ce sont les valeurs moyennes, déterminées sur un très grand nombre de ces objets, qui font le lien avec le monde macroscopique : ces valeurs moyennes (énergie, position, etc) se comportent selon les lois de la physique « classique ».