Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Pour nommer une droite, on utilise le nom des deux points situés à ses extrémités et on les écrit entre parenthèses. Par exemple, une droite allant du point A au point B peut s'écrire (AB). Il ne faut pas confondre avec [AB], qui est le nom du segment ayant pour extrémités les points A et B.
Définition : On dit que deux droites qui se coupent (se croisent) sont des droites sécantes. Propriété : Quand deux droites sont sécantes, elles forment un point. Ce point est appelé point d'intersection.
Deux droites parallèles sont deux droites qui ne sont pas sécantes Exemple : Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites sont parallèles lorsqu'elles ne se coupent pas.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours.
P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles. P : Si deux angles alternes-internes déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
Deux droites sont dites sécantes si elles ont un point commun et un seul (Bouvier-GeorgeMath. 1979).
Définition : La droite (AB) est la droite qui passe par les points A et B. Une droite est illimitée. On peut prolonger son tracé de chaque côté. Définition : La segment [AB] est la partie de la droite qui a pour extrémités les points A et B.
En géométrie, la droite désigne un objet géométrique formé de points alignés. Elle est illimitée des deux côtés, et sans épaisseur. Dans la pratique, elle est représentée sur une feuille par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur —celle du crayon.
Une droite est constituée de points alignés. On représente une droite à l'aide d'une règle. Une droite est composée d'une infinité de points. Une droite est illimitée.
On dit que trois points ou plus sont alignés s'ils sont sur une même droite.
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit. Les droites (d1) et (d2) sont perpendiculaires.
Deux droites distinctes sont parallèles si elles n'ont aucun point commun même si on les prolonge. Deux droites sont perpendiculaires si elles se coupent en formant un angle droit.
Elle est désignée par une lettre minuscule entre parenthèses. Une demi-droite est une droite délimitée par un point d'un côté et infinie de l'autre. Elle est désignée par une lettre majuscule entre crochets d'un côté et une autre lettre majuscule entre parenthèses de l'autre.
Quand on trace deux droites dans le plan, trois cas sont possibles. Les deux droites se coupent en un point O ; on dit qu'elles sont sécantes en O. (d) et (d') sont sécantes en O. Les deux droites ont une infinité de points communs ; on dit qu'elles sont confondues.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
On dit que deux droites sont parallèles lorsqu'elles n'ont pas d'intersection, même si on les prolonge à l'infini. Deux droites qui ne sont pas parallèles sont sécantes. Des droites ou des segments sont perpendiculaires, lorsqu'ils se coupent en formant un angle droit.
Deux droites de l'espace sont perpendiculaires si et seulement si elles se coupent en formant un angle droit. Dans l'espace, des droites, non parallèles, peuvent ne pas se couper. Si une des droites est parallèle à une droite perpendiculaire à l'autre alors les deux droites sont dites orthogonales.
Deux ou plusieurs droites appartiennent à la même direction si elles sont parallèles entre elles. Sur une droite quelconque représentant une direction donnée, il y a deux sens de parcours. Par un point P du plan passent une infinité de droites; chacune d'elles appartient à une direction différente.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Deux droites seront sécantes si elles n'ont pas le même coefficient directeur. Elles n'ont alors qu'un seul point d'intersection. Les coordonnées de ce point pourront être déterminées par la résolution d'un système d'équations.