Exemple : 44 a pour diviseurs 2 et 1. Or 2+1=3 qui est inférieur à 4, donc 4 est un nombre déficient. Exemple : Les premiers nombres déficients sont : 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50...
Pour qu'un nombre soit divisible par 4, il faut qu'il soit divisible par 2 et encore par 2. e. Un nombre divisible par 6 est divisible par 3 et par 2.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Les diviseurs de 48 sont : 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48. Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. a. Donner la liste des diviseurs communs de 48 et 72.
Deux fois 23 est égal à 46. Et cela fait de deux un diviseur de 46. 46 et deux sont les seuls diviseurs de la liste donnée.
Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
Tous les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Tous les diviseurs de 100 sont : 1, 2, 4, 5, 10, 20, 25, 50, 100 Les diviseurs communs à 60 et 100 sont : 1, 2, 4, 5, 10, 20 Le plus grand diviseur commun à 60 et 100 est 20.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
Le nombre de diviseurs d'un nombre est égal au produit des puissances de chacun de ses facteurs premiers, chacune augmentée de 1.
On appelle nombre premier tout entier naturel qui n'admet que deux diviseurs distincts positifs : lui-même et 1. Les nombres 0 et 1 ne sont pas des nombres premiers. En effet, 0 a une infinité de diviseurs et 1 n'a que lui-même pour diviseur positif. 2, 3, 5, 11, 31 sont des nombres premiers.
La bonne réponse est 22. En effet, à partir du 3ème nombre, chaque nouveau nombre est le résultat de l'addition des deux nombres précédents moins 1.
Pour ceux qui ne l'ignorait encore, le numéro 73 qui est présenté comme le numéro préféré de Sheldon n'est, en réalité, pas anodin. Il s'agit effectivement de l'année de naissance de Jim Parsons, l'interprète de Sheldon Cooper.
Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
Par convention, un diviseur de 0 est un nombre non nul (et ainsi 0 n'est pas diviseur de 0) dans les cours que j'ai lus. Lorsque l'anneau (A,+,.) est non réduit à {0} et est intègre, il n'y a pas de diviseur de 0 dans A (comme R et Z par exemple) .
Par exemple, le nombre entier 7 est premier car 1 et 7 sont ses seuls diviseurs entiers et positifs. Tout nombre pair étant multiple de 2, les nombres premiers sont tous impairs, excepté le nombre 2 lui-même.
Dans l'opération 12 ÷ 4 = 3, le nombre 4 est le diviseur entier de 12 car le reste de cette division est nul. Les diviseurs entiers (positifs) de 12 sont {1, 2, 3, 4, 6, 12}.
« 8 » est un nombre composé, ses diviseurs propres sont 1, 2, et 4.
De fait, 200 est composé et possède exactement douze diviseurs : 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100 et 200. Mais cette propriété n'établit pas un record pour lui car 60, qui est plus petit, possède lui aussi douze diviseurs.
Les diviseurs de 51 sont : 1,3,17,51. Le seul diviseur commun est 1, donc 40 et 51 sont premiers entre eux. Définition 3 : Parmi les diviseurs communs à deux nombres et , le plus grand de ces diviseurs est appelé PGCD de et , noté PGCD( , ).
55 a pour diviseurs : 1, 5,11 et 55. 32 a pour diviseurs : 1, 2, 4, 8, 16 et 32. L'unique diviseur commun de 55 et 32 est 1 : PGCD (55 ; 32) = 1 Réponse : Les entiers 55 et 32 sont premiers entre eux.