Un nombre complexe z se présente en général sous forme algébrique comme une somme a + ib, où a et b sont des nombres réels quelconques et où i (l'unité imaginaire) est un nombre particulier tel que i2 = –1.
Théorème - Définition : On peut toujours écrire un nombre complexe z sous la forme : z = |z|(cos(θ)+i sin(θ)), avec θ = arg(z). On appelle ceci la forme trigonométrique de z. cos(θ) = a |z| , sin(θ) = b |z| . Exemple : Calculer |z| et arg(z) pour z = 1+i.
Elle fait partie de l'ensemble des nombres imaginaires. Ainsi le nombre i est défini comme suit : i est un nombre dont le carré est -1, algébriquement : i2 = -1.
Les nombres complexes se révèlent très tôt utiles dans la résolution des équations polynomiales, ainsi que l'expose Bombelli dès 1572. Ils permettent également aux mathématiciens de s'intéresser dès 1608 au théorème fondamental de l'algèbre. Ils sont utilisés dès le début du XVIII e siècle dans le calcul intégral.
Un nombre complexe est un nombre composé d'unités de temps diverses : jours, heures, minutes, secondes. 1 j = 24 h ; 1 h = 60 min ; 1 min = 60 s ; 1h =3 600 s.
Comment diviser un nombre complexe par un nombre entier ? Pour diviser un nombre complexe par un nombre entier, on convertit le nombre complexe en la plus petite unité selon le cas puis on le divise par le nombre entier et on reconvertit le résultat s'il y a lieu.
Le quotient d'un nombre complexe z = a + b i par un réel k non nul est le nombre complexe défini par : a + b i k = a k + b k i .
Le symbole R désigne l'ensemble des nombres réels. Tous les nombres naturels, entiers, décimaux et rationnels sont des nombres réels.
1. Qui contient plusieurs parties ou plusieurs éléments combinés d'une manière qui n'est pas immédiatement claire pour l'esprit ; compliqué, difficile à comprendre : Question complexe. Une personnalité complexe.
En effet, 0²=0 et c'est le seul nombre qui a pour carré 0. La dernière équation n'admet aucune solution. Il n'existe aucun carré négatif.
On peut remarquer que √0=0, √1=1, √4=2, √9=3, √16=4, …
En fait, la racine carrée d'un nombre négatif n'existe pas. La racine carrée peut etre négative car un carré, comme il est connu, est obtenu en multipliant un nombre par lui-même. De ce fait, donc dans ce cas, le carré d'un nombre négatif est positif.
Un complexe physique, c'est un sentiment de dévalorisation qu'on accroche à une caractéristique de notre corps. Celle-ci peut être bien réelle ou carrément déformée par notre propre perception.
L'argument d'un nombre complexe ? est la mesure de l'angle entre l'axe des réels positifs d'un plan complexe et le segment reliant l'origine à l'image du nombre complexe, mesurée en radians dans le sens inverse des aiguilles d'une montre.
Cela étant fait on CONSTRUIT formellement C à partir des couples de R^2, en prenant les règles de calcul sur les coules déterminées ci-avant. On DEFINIT ensuite le complexe i comme étant le couple (0,1). Donc i^2 =-1 par CONSTRUCTION.
Les nombres entiers, représentés par Z , regroupent tous les nombres entiers positifs et négatifs. On utilise fréquemment l'appellation nombres entiers relatifs. On peut voir l'ensemble des nombres entiers comme l'ensemble regroupant les nombres entiers naturels (N) et leurs opposés, les nombres entiers négatifs.
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble.
Symbole. Le symbole Q désigne l'ensemble des nombres rationnels. Tous les nombres naturels, entiers et décimaux sont des nombres rationnels.
En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide. Il est le plus petit des entiers positifs ou nuls.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques.
Deux nombres sont inverses lorsque leur produit est égal à 1.
Une astuce assez courante consiste à multiplier numérateur et dénominateur par a − i b : 1 z = ( a − i b ) ( a + i b ) ( a − i b ) . Or ( a + i b ) ( a − i b ) = a 2 − i 2 b 2 = a 2 + b 2 ce qui donne le résultat.