- Si un quadrilatère a ses côtés opposés parallèles deux à deux alors c'est un parallélogramme. - Si un quadrilatère a ses côtés opposés deux à deux de même longueur alors c'est un parallélogramme. - Si un quadrilatère a deux de ses côtés opposés parallèles et de même longueur alors c'est un parallélogramme.
Le carré, le losange et le rectangle sont des quadrilatères particuliers car ils ont les côtés opposés parallèles 2 à 2. Elles se coupent en leur milieu, ont la même longueur. Elles se coupent en leur milieu, ont la même longueur et sont perpendiculaires.
Un quadrilatère a 4 côtés, 4 angles et 4 sommets. Les diagonales sont les segments qui joignent les sommets opposés. Le parallélogramme a ses côtés opposés parallèles et égaux. Ses diagonales se coupent en leur milieu.
Déterminer si c'est un trapèze
Un quadrilatère non croisé est un trapèze si et seulement si deux de ses côtés sont parallèles. \left(AB\right) et \left(CD\right) semblent être parallèles. Le quadrilatère ABCD semble donc être un trapèze.
Si les côtés opposés d'un quadrilatère sont parallèles alors c'est un parallélogramme. Si les côtés opposés d'un quadrilatère sont de même longueurs alors c'est un parallélogramme. Si les diagonales d'un quadrilatère ont le même milieu alors ce quadrilatère est un parallélogramme.
Un quadrilatère convexe est un trapèze si et seulement s'il possède une paire d'angles consécutifs de somme égale à 180°, soit π radians. La somme des deux autres angles est alors la même. Par exemple dans la figure ci-dessus, les deux paires d'angles ont pour sommets (A,D) et (B,C).
I) Le parallélogramme.
Quelle est la nature du quadrilatère ABCD ? On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.
Propriété : Si un quadrilatère est un losange alors ses 4 côtés ont la même longueur. Propriété : Si un quadrilatère est un rectangle alors ses diagonales ont la même longueur.
Propriété : si les diagonales d'un quadrilatère ont même milieu, alors ce quadrilatère est un parallélogramme. = 0 donc (−1 ;0). Conclusion : les points et sont confondus, les diagonales du quadrilatère ont le même milieu, donc le quadrilatère est un parallélogramme.
On nomme un polygone en fonction du nombre de ses côtés : o le triangle est un polygone qui a trois côtés ; o le quadrilatère est un polygone qui a quatre côtés ; o le pentagone est un polygone qui a cinq côtés ; o l'hexagone est un polygone qui a six côtés ; o l'heptagone est un polygone qui a sept côtés ; o l' ...
Quadrilatère (n.m. et adj.) : définition. Le quadrilatère est un espace extérieur fermé avec quatre angles indéfinis. Les angles internes de tous les quadrilatères totalisent 360 °. Les polygones à quatre côtés sont généralement appelés quadrilatères, quadrangles ou tétragones.
Pour nommer ce quadrilatère, il faut citer les sommets dans l'ordre où ils apparaissent en parcourant le quadrilatère. Différents noms possibles : ABCD, BCDA, DCBA, … mais pas ABDC. Le mot vient du gaulois lausa = pierre plate Les lauzes recouvrent encore les toits de quelques maisons anciennes.
Un losange a ses diagonales perpendiculaires. 2. Si un quadrilatère a ses diagonales perpendiculaires, alors c'est un losange.
Si les diagonales d'un quadrilatère ont le même milieu, alors ce quadrilatère est un parallélogramme. Si les cotés opposés d'un quadrilatère non croisé sont de même longueur deux à deux,alors ce quadrilatère est un parallélogramme.
L'aire d'un rectangle de longueur L et de largeur l est donnée par la formule : A = L × l. L'aire du rectangle est : A = 5 × 8 = 40 cm².
Dans le cas particulier du quadrilatère, il existe d'autres caractérisations : un quadrilatère est convexe si et seulement si : les diagonales se rencontrent. les diagonales sont situées à l'intérieur du quadrilatère. une droite du plan ne passant pas par un sommet rencontre au plus deux côtés du quadrilatère.
Propriétés du parallélogramme
Les diagonales se coupent en leur milieu. Le centre du parallélogramme est le centre de symétrie. Les côtés opposés sont parallèles. Les côtés opposés sont de même longueur.
Définition : Un carré est un quadrilatère dont les quatre côtés ont la même longueur et les quatre angles sont droits. Propriété : Un carré est à la fois un losange et un rectangle, il possède donc toutes les propriétés du losange et du rectangle.
Dans le quadrilatère ABCD, les diagonales ont le même milieu O et ont la même longueur. On admettra la propriété suivante : Propriété 7 : Si un quadrilatère a ses diagonales qui ont le même milieu et la même longueur, alors ce quadrilatère est un rectangle.
Un losange est un quadrilatère dont les 4 côtés sont de même longueur. Ses côtés opposés sont donc de même longueur 2 à 2 : le losange est donc un parallélogramme.
2) Si un parallélogramme possède un angle droit, alors c'est un rectangle. 3) Si un parallélogramme possède des diagonales de même longueur, alors c'est un rectangle. Définition Un losange est un quadrilatère dont les quatre côtés sont de même longueur.