On parle d'erreur sur une mesure physique lorsqu'on peut la comparer à une valeur de référence qu'on peut considérer comme "vraie" (par ex: mesure de la vitesse de la lumière, de la température du zéro absolu).
L'incertitude associée est une incertitude de répétabilité dite de type A. Une incertitude de type A est évaluée par des méthodes statistiques qui mettent en jeu la moyenne et l'écart-type. Elle est issue de l'exploitation d'un nombre important de valeurs mesurées.
Il faut considérer trois sources d'erreur (uncertainty en anglais) : l'exactitude de la mesure Δ1, ou l'incertitude (resolution en anglais) ; la dispersion statistique Δ2 (precision en anglais) ; l'erreur systématique Δ3 (accuracy en anglais).
Ainsi, une erreur et une incertitude diffèrent, en ce sens que l'erreur est la représentation de la différence entre une valeur mesurée d'une grandeur et une valeur de référence, et que l'incertitude évalue quantitativement la qualité d'un résultat de mesure, par un écart type.
Définition (Erreur aléatoire)
Lors de mesurages répétés, une erreur est dite aléatoire si elle varie de façon imprévisible. Dans ce cas les différents résultats de mesures se répartissent de façon aléatoire autour d'une valeur moyenne.
En sciences, en métrologie (physique, chimie, biologie médicale, électronique…), l'incertitude désigne, d'après Vold, la marge d'« imprécision » sur la valeur de la mesure d'une grandeur physique ou, d'après le VIM , la dispersion des valeurs qui pourraient raisonnablement être attribuées à une grandeur.
Divisez l'erreur absolue par la valeur réelle de l'objet en question afin d'obtenir l'erreur relative. Le résultat est l'erreur relative. Cette équation simple vous indique si vous étiez loin de la mesure globale.
Par exemple, si un thermocouple indique une température de 25,1 °C alors que l'appareil de référence indique 26,0 °C, l'erreur absolue de la mesure est égale à -0,9°C. L'erreur relative est égale à -3,46%.
Rappelons maintenant que si une erreur systématique est un problème dans le processus de mesure qui se produit pour chaque mesure effectuée, une erreur aléatoire est une erreur qui se produit de manière imprévisible. Et elle a généralement comme source des facteurs inconnus.
L'erreur absolue, notée δX, est l'écart qui existe entre la valeur mesurée et sa valeur théorique exacte exprimée avec la même unité. L'erreur relative est le quotient de l'erreur absolue à la valeur exacte.
Exemple. Si l'erreur absolue d'une mesure est ε = 0,2 m sur une mesure de 40 m, alors l'erreur relative est donnée par : 40,2−4040=0,005. L'erreur relative est donc de 0,5 %.
L'erreur expérimentale est la différence entre la mesure et sa valeur acceptée. Il y a deux principaux types d'erreurs expérimentales : l'erreur systématique et l'erreur aléatoire.
Erreurs accidentelles
Une erreur accidentelle est une erreur qui varie de façon imprévisible en valeur absolue et en signe lorsque l'on effectue un grand nombre de mesurages de la même valeur d'une grandeur dans des conditions pratiquement identiques. L'erreur accidentelle est une variable aléatoire.
Cette erreur est appelée incertitude. Le résultat X de la mesure est donné de la façon suivante : X + U(X) avec : U(X) l'incertitude sur X. Des méthodes particulières ont en conséquence été mises au point afin de calculer ces incertitudes et d'avoir une certaine fiabilité quant aux résultats obtenus.
Pour rendre compte du degré d'approximation auquel nous travaillerons, nous devrons estimer les erreurs commises dans les diverses mesures et nous devrons calculer leurs conséquences dans les résultats obtenus. C'est le but du calcul d'erreur ou calcul d'incertitude.
« Où est l'erreur ? » est un livre-jeu où vous retrouverez 10 scènes inspirées de l'histoire, de la science, du sport, des voyages et des grandes explorations.
Pour calculer l'incertitude lors d'une multiplication ou d'une division, il faut diviser par deux la différence entre la valeur maximale et la valeur minimale pouvant être obtenue par les incertitudes.
La relation entre le titre molaire et la normalité est donc TMA=NA/ 3. Il en est de meme pour le calcul de l'incertitude : DTMA= DNA/ 3.
Lors d'expériences, un écart relatif est une valeur calculée qui permet de déterminer si le produit ciblé par l'expérimentation respecte son cahier des charges ou non. Plus l'écart relatif est petit, plus la grandeur mesurée est satisfaisante car elle est proche de la grandeur de référence attendue.
L'incertitude absolue (ΔA) d'une somme ou d'une différence est égale à la somme des incertitudes absolues (ΔB + ΔC + …) : si A = B + C ou A = B - C, alors ΔA = ΔB + ΔC.
Soustrayez la valeur réelle à la valeur mesurée.
Étant donné que l'erreur absolue est forcément positive, vous devez prendre la valeur absolue de cette différence et ignorer tout signe négatif X Source de recherche . Vous obtenez ainsi l'erreur absolue. . L'erreur absolue est donc de 2 mètres.
Les erreurs systématiques sont souvent difficiles à détecter a priori, mais elles peuvent dans les cas les plus simples être déduites a posteriori à partir de l'allure des résultats. Il est alors possible de corriger les valeurs mesurées en leur ajoutant une correction compensant pour l'erreur systématique.
Modélisation erronée de l'escalier
Une erreur très fréquente est l'absence de lien entre l'escalier et les éléments structuraux du niveau ou l'absence de chevauchement des escaliers à dalle rampante dans le cas de configurations en plan en « L », en « C », etc.