A U B (l'union de A et B) est l'ensemble de nombres qui appartiennent soit à A soit à B (soit aux deux).
Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪.
Lorsque 2 évènements sont compatibles, la probabilité que l'évènement A ou l'évènement B se produise est P(A∪B)=P(A)+P(B)−P(A∩B). P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) .
L'ensemble réunion de A et de B, noté « A U B » (lire « A union B »), est l'ensemble des éléments appartenant à A ou à B : c'est-à-dire que : x ∈ A ∪ B si et seulement si x ∈ A ou x ∈ B.
L'union de deux ensembles est l'ensemble constitué de tous les éléments appartenant soit à un ensemble, soit à l'autre ensemble. Exemple : L'union de l'ensemble {1,3,5} avec l'ensemble {1,2,6,8} est l'ensemble {1,2,3,5,6,8}.
On peut le définir mathématiquement ainsi 𝑋 ∶ = { 𝑥 ∈ ℝ ∶ 𝑓 ( 𝑥 ) ∈ ℝ } . L'ensemble image 𝑓 ( 𝑋 ) est l'ensemble des valeurs que nous pouvons obtenir en appliquant 𝑓 aux éléments de 𝑋 . Mathématiquement, il est défini par 𝑓 ( 𝑋 ) ∶ = { 𝑓 ( 𝑥 ) ∶ 𝑥 ∈ 𝑋 } .
L'ensemble {x | x ∈ A et x ∈ B} est appelé l'intersection des ensembles A et B et est noté A ∩ B. Si A ∩ B = ∅, on dit que A et B sont disjoints. (A ne pas confondre avec distinct qui est la négation de égal) L'ensemble {x | x ∈ A ou x ∈ B} est appelé l'union des ensembles A et B et est noté A∪B.
A ∩ B (l'intersection de A et B) est l'ensemble de nombres qui appartiennent à la fois à A et à B. A U B (l'union de A et B) est l'ensemble de nombres qui appartiennent soit à A soit à B (soit aux deux).
L'événement "A ou B", noté A ∪ B, est réalisé lorsqu'au moins l'un des deux événements est réalisé. Théorème : Si A et B sont deux événements d'une expérience aléatoire, alors : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents. En effet, l'ensemble des personnes absentes est le complémentaire de celui des personnes présentes. Si 47 personnes sont présentes, alors il y a 50 – 47 = 3 absents.
Deux événements A et B sont dits indépendants (par rapport à P ) si P(A∩B)=P(A)P(B), P ( A ∩ B ) = P ( A ) P ( B ) , ce qui peut encore s'écrire, si P(A)≠0 P ( A ) ≠ 0 , P(B|A)=P(B) P ( B | A ) = P ( B ) .
Or, C∪(A∩B)=A d'où P(A)=P(C)+P(A∩B) et P(C)=P(A)−P(A∩B). Ainsi, en combinant les deux résultats, on obtient P(A∪B)=P(A)−P(A∩B)+P(B), c'est-à-dire P(A∪B)+P(A∩B)=P(A)+P(B).
Dans le langage courant, on dit que deux événements sont indépendants quand la réalisation de l'un ne dépend pas de celle de l'autre. On va donner une définition mathématique de cette notion. Deux évènements A et B sont dits indépendants si P(A B) = P(A) × P(B).
L'union est donc associée à la notion du « ou » en probabilités. Dans un diagramme de Venn, l'union des ensembles A et B, notée A∪B, A ∪ B , comprend tout ce qui se trouve à l'intérieur de l'ensemble A et de l'ensemble B, incluant la partie commune aux 2 ensembles.
Symbole. Le symbole utilisé est « ∩ », qui se lit « inter » ou « intersection ». Ainsi A ∩ B se lit « A inter B » ou « l'ensemble A intersection l'ensemble B ».
Le signe > signifie que le nombre situé à gauche de > est plus grand (ou supérieur) que celui situé à droite de >. Le signe < signifie que le nombre situé à gauche de < est plus petit (ou inférieur) que celui situé à droite de <. Exemples : 5 > 3 signifie que 5 est supérieur à 3.
On utilise la formule P(B|A)=P(B∩A)P(A). P ( B | A ) = P ( B ∩ A ) P ( A ) .
Pour un système complet d'événements, , la formule des probabilités totales s'écrit : P ( A ) = ∑ i ∈ I P ( A ∩ B i ) . Le théorème de Bayes, P ( A | B ) = P ( B | A ) P ( A ) P ( A ) , s'applique à de nombreuses situations de la vie réelle.
Un arbre pondéré permet de représenter la succession de deux épreuves. Une branche relie deux événements successifs. Sur chaque branche, on note la probabilité correspondante. Un chemin est une suite de branches, il représente l'intersection des événements rencontrés sur ce chemin.
communion, concorde, entente, fraternité, harmonie, unité. – Littéraire : concert. Contraire : antagonisme, désaccord, désunion, dissension, divorce, mésentente, opposition, zizanie.
P[A ∩ B] = P[A] × P[B].
En géométrie, l'intersection de deux droites est le point (géométrie) du plan où elles se croisent, en d'autres termes : c'est le seul et unique point commun aux deux droites. Les deux droites a et b se croisent en A. A est donc le point d'intersection entre a et b.
L'ensemble ℕ vient de l'appellation naturale attribuée à Peano. Il désigne l'ensemble des nombres entiers naturels (exemples : 0 1 2 3 7). Si l'on note ℕ*, cela signifie que l'on exclut le zéro. L'ensemble ℤ vient de l'allemand zahlen qui signifie compter.
L'ensemble ℝ
Un nombre réel est non seulement un nombre rationnel, mais peut aussi être un nombre dont le développement décimal est infini, et non périodique. Exemples : …. -5/4, -4, -4.2, -3, -2, -1.524, -1/2, 0, +0.7, +1, +2, +2.41, +3, +4/5, +5, +6, +6.75, +7/2, +8…
Non, l'ensemble des entiers naturels n'est pas inclus dans Q car certains entiers naturels, tels que 3 et 5, ne peuvent pas être exprimés sous forme de fraction de deux entiers.