L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
En mathématiques, l'écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.
La racine carrée de la variance nous donne les unités utilisées dans l'échelle originale. L'écart-type est la mesure de dispersion la plus couramment utilisée en statistique lorsqu'on emploie la moyenne pour calculer une tendance centrale. Il mesure donc la dispersion autour de la moyenne.
Le symbole de l'écart-type se lit sigma. Au pluriel, on écrit : écarts-types et écarts types.
L'écart entre chaque valeur et la moyenne s'exprime en kg. Le carré de cet écart s'exprime donc en kg2.
L'écart-type d'une variable aléatoire est une mesure de la dispersion de sa distribution de probabilité. Pour une variable aléatoire 𝑋 , l'écart-type est noté 𝜎 ou 𝜎 .
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
Il est possible de l'interpréter comme la dispersion des valeurs par rapport à la moyenne. Concrètement, la variance est définie comme la moyenne des carrés des écarts à la moyenne. La considération du carré de ces écarts évite que s'annulent des écarts positifs et négatifs.
Pour lancer le calcul de x et de l'écart type, il suffit de taper sur la touche STAT, puis de choisir dans le menu CALC (écran 4) la première option 1 : Stats 1-Var ; il faut ensuite préciser les deux colonnes L1 et L2, séparées par une virgule (écran 5).
L'écart-type ne peut pas être négatif. Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Un écart-type faible nous indique qu'en moyenne, les points de données sont proches de la moyenne et un écart-type élevé nous indique qu'en moyenne, les points de données sont éloignés de la moyenne.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
Pour comparer deux séries statistiques, en termes d'homogénéité, on compare les écartes types : Si ils sont sensiblement égales alors les dispersions des deux sont semblables.
Moyenne : La moyenne arithmétique est la somme des valeurs de la variable divisée par le nombre d'individus. La variance : La variance est la moyenne des carrés des écarts à la moyenne. L'écart-type : c'est la racine carrée de la variance.
La moyenne est calculable pour les variables numériques, qu'elles soient discrètes ou continues. On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
L'écart type est une mesure de la dispersion des valeurs par rapport à la moyenne (valeur moyenne). Important : Cette fonction a été remplacée par une ou plusieurs nouvelles fonctions proposant une meilleure précision et dont les noms reflètent mieux leur rôle.
Pour cela, appuyer sur les touches o, e {STAT} et q {X}. Saisir ensuite, par exemple, w { } ou y { } pour obtenir la moyenne ou l'écart-type de la série.
Dans la version en anglais d'Excel, c'est la formule STDEV. S () qui doit être appelée pour calculer l'écart type d'un échantillon représentatif ou STDEV. P () pour une population entière. Enfin, dans les versions 2007 et antérieures, la fonction à taper est simplement ECARTYPE ().