Qu'appelle-t-on une intégrale impropre ? Si sur un certain intervalle le domaine sous la courbe de la fonction est illimité, alors l'intégrale de sur cet intervalle est dite impropre. C'est le cas si au moins l'une des bornes d'intégration est ou .
Définition : Soit une fonction réelle, localement intégrable sur un intervalle , avec ω ∈ R ou . On dit que l'intégrale ∫ a ω f ( t ) d t est absolument convergente si l'intégrale ∫ a ω | f ( t ) | d t est convergente.
Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
Toute fonction en escalier est bornée car elle ne prend qu'un nombre fini de valeurs. Si f est réglée, il existe ϕ en escalier telle que, pour tout x ∈ [a, b], |f(x) − ϕ(x)| ≤ 1, et donc |f(x)|≤|ϕ(x)| + 1, ce qui prouve que f est bornée.
Théorème de continuité sous l'intégrale: Soient I et J deux intervalles de R et f une fonction définie sur I × J vérifiant: 1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3.
Pour l'intervalle fermé moins 𝑎, 𝑎, si la fonction est impaire, l'intégrale définie de moins 𝑎 à 𝑎 de 𝑓 de 𝑥 par rapport à 𝑥 est égale à zéro. Et si elle est paire, on trouve qu'elle est égale à deux fois l'intégrale définie de zéro à 𝑎 de 𝑓 de 𝑥 par rapport à 𝑥.
Si la fonction f est impaire, sa courbe représentative est symétrique par rapport à l'origine. L'intégrale entre a et -a est nulle car l'aire comprise entre -a et 0 aura un signe moins alors que celle entre 0 et a aura la même valeur mais avec un signe +.
1 xα dx est convergente si et seulement si α < 1. Démonstration : C'est la même que la proposition précédente sauf qu'on regarde cette fois la limite quand a tend vers 0. Dans ce cas, a1−α convergera si et seulement si α < 1. En résumé : 1/x est toujours le cas critique et n'est jamais intégrable.
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
La première définition rigoureuse des intégrales et primitives des fonctions continues est due à Augustin-Louis Cauchy (1789-1857).
pour tout x dans l'intervalle [a, b]. f(t)dt. Lorsqu'on trouve une primitive d'une fonction f dans une table, ou qu'elle se déduit des tables à partir de quelques calculs algébriques, il n'y a rien d'autre à faire : L'intégrale est donnée par la Formule de Newton-Leibniz. (e2x + sin(x))dx.
Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
Condition suffisante d'existence d'une primitive
Si f est une fonction continue sur l'intervalle [a,b], alors f admet une primitive F définie pour tout x ∈ [ a , b ] x \in \left[a,b\right] x∈[a,b] par F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x}f(t)dt F(x)=∫axf(t)dt.
Si la courbe passe au-dessus et en-dessous de l'axe des 𝑥 dans l'intervalle [ 𝑎 ; 𝑏 ] , alors son intégrale définie est la différence entre l'aire au-dessus de l'axe des 𝑥 et l'aire sous l'axe des 𝑥 , dans l'intervalle [ 𝑎 ; 𝑏 ] .
En mathématiques, un zéro ou point d'annulation d'une fonction est une valeur en laquelle cette fonction s'annule. Autrement dit, il s'agit d'un antécédent de la valeur zéro. La fonction représentée ci-dessus admet deux zéros, l'un entre −3 et −2, l'autre entre −1 et 0.
Solution Il faut tout d'abord déterminer la valeur de f(−x). Si f(−x)=f(x), la fonction est paire, si f(−x)=−f(x), la fonction est impaire et si on n'obtient aucune des deux égalités précédentes, la fonction n'est ni paire ni impaire.