Si p/q est une racine rationnelle de A (avec p et q entiers premiers entre eux), alors p divise a0 et q divise an ; de plus, le quotient de la division de A par qX −p est `a coefficients entiers. Si A est un polynôme unitaire `a coefficients entiers, toute racine rationnelle de A est un entier.
Elle désigne une racine d'une équation que l'on peut trouver sans faire appel à une méthode élaborée comme la méthode de Cardan pour les équations du troisième degré ou bien encore la méthode de Ferrari ou la méthode de Descartes pour les équations du quatrième degré.
Une racine évidente est un nombre simple dont on calcule rapidement l'image par la fonction polynôme, cette image doit être 0. Une racine évidente obtenue, on trouve facilement l'autre racine par identification des coefficients de la fonction polynôme.
On dit que a est racine d'ordre r de A s'il existe un polynôme Q tel que A = (X a)rQ avec Q(a) 6= 0. Autrement dit, a est racine d'ordre r de A si A est divisible par (X a)r mais pas par (X a)r+1. Une racine est dite simple si elle est d'ordre 1, double si elle est d'ordre 2,. . .
En mathématiques, une racine d'un polynôme P(X) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de X2 – X sont 0 et 1.
Définition : Discriminant d'une équation du second degré Si Δ est strictement positif, alors il y a deux solutions réelles à l'équation du second degré. Si Δ = 0 , alors il y a une solution réelle (répétée). Et si Δ est strictement négatif, alors il n'y a pas de solutions réelles.
x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0. On a alors : x0 = −b / (2a).
On peut remarquer que √0=0, √1=1, √4=2, √9=3, √16=4, …
Racines : Une racine réelle dite "double" : x1 = − b 2a . Factorisation : Pour tout x, ax2 +bx+c = a(x−x1)2. Signe : ax2 +bx+c est toujours du signe de a et s'annule pour x = x1. Résolution dans R de l'équation x2 +2x−3 = 0 : (Par rapport aux formules, on a ici : a = 1, b = 2 et c = −3 ).
Un polynôme nul est un polynôme dont tous les coefficients sont nuls, y compris le coefficient constant.
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
Si x1 et x2 sont les racines d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x1)(x − x2). Si x0 est l'unique racine d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x0)2.
Recherche de racine(s) et signe d'un polynôme : Un polynôme du second degré P(x) = ax² + bx + c admet au plus deux racines. Le nombre exact de ses racines est déterminé par le signe d'un expression notée Δ qu'on appelle le discriminant. Δ = b² - 4ac.
Ils sont donc tous les deux divisibles par 2 et ne sont donc pas premiers entre eux (car ils ont un diviseur commun différent de 1 et −1). Ceci est une contradiction (étape n°2). Ainsi, √2 ne peut pas être un nombre rationnel ; c'est donc un nombre irrationnel.
La contradiction assure que √ 3 est irrationnel.
La réponse est non : Théorème. — La racine carrée de 2 n'est pas un nombre rationnel.
Incidence du signe du discriminant sur les racines de l'équation du second degré à coefficients réels. En mathématiques, le discriminant est une notion algébrique. Il est utilisé pour résoudre des équations du second degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines...).
Si Δ < 0 , alors l'équation f(x)=0 n'admet aucune solution réelle. f ne peut pas s'écrire sous forme factorisée. Si Δ = 0 , alors l'équation f(x)=0 admet une unique solution x0=-b2a . Si Δ > 0 , alors l'équation f(x)=0 a deux solutions x1=-b-√Δ2a et x2=-b+√Δ2a.
Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(
2) EXPLICATION DU CUBE D'UN NOMBRE
L'exposant 3 qui apparaît en haut à gauche du nombre 7 indique que ce nombre doit être multiplié deux fois par lui-même : 7 x 7 x 7 Le résultat est 147. Des nombres au carré peuvent s'additionner avec d'autres nombres au carré ou avec des nombres au cube, et vice versa.
4 au carré est égal à 16.
le Delta est un intermédiaire de calcul qui permet de savoir si l'équation a 0, 1 ou 2 solutions. Il y aura dans la suite des cours des tas d'exemples où il sera utile de savoir résoudre ces équations (notamment en physique et chimie, mais pas seulement).
Sciences. La lettre majuscule Δ est souvent utilisée en sciences et mathématiques pour nommer une différence entre deux grandeurs, delta étant l'initiale du mot grec διαφορά (diaphorá), « différence ». L'opérateur laplacien est noté Δ ; l'opérateur nabla prend la forme d'un delta renversé, ∇.
L'équation de la fonction racine carrée peut s'écrire f(x)=a√bx f ( x ) = a b x où a et b sont tous deux non nuls.