1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (appelées « Étoiles foncées ») (en se servant des lois de Newton de la gravitation).
Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
Les trous noirs sont des objets astronomiques dont la gravité est telle que même la lumière ne peut s'en échapper. Ils ont été découverts en 1783 par les astronomes, grâce à l'observation d'une comète qui ne pouvait être observable dans l'espace normal.
Un trou noir est créé après la mort d'une étoile très massive. Le noyau de l'étoile s'effondre sur lui-même, ce qui entraine l'expulsion des couches externes de l'étoile en une gigantesque explosion : une supernova. Tout le reste de la matière se concentre en un petit point appelé singularité.
Le trou noir au coeur de notre Voie Lactée
Les principaux sont les trous noirs « stellaires » (quelques dizaines de fois la masse du Soleil) et les « supermassifs » (quelques millions de fois la masse du Soleil). Il existe aussi les trous noirs « intermédiaires » et « miniatures ».
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Selon la relativité générale, l'intérieur d'un trou noir est occupé par une singularité gravitationnelle. Cependant, aujourd'hui, les physiciens savent que les singularités n'ont pas de réalité physique.
De fait, un trou noir comporte plusieurs couches. On trouve d'abord l'horizon des événements, connu sous le nom de point de non-retour, puis le disque d'accrétion. Il s'agit d'un énorme disque de poussière et de gaz tourbillonnant autour du trou noir.
La détection des trous noirs repose sur des indices astronomiques. Au cours des deux dernières décennies, les astronomes et physiciens du monde entier ont cherché à déduire leur présence, à défaut de prouver leur existence par observation directe.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Ce trou noir supermassif a une masse équivalente à plus de 30 milliards de fois celle du soleil, selon une étude parue dans une revue scientifique britannique.
Il serait 33 milliards de fois plus massif que notre Soleil, selon les résultats de l'étude publiée dans la Royal Astronomical Society. « Ce trou noir particulier, qui représente environ 30 milliards de fois la masse de notre Soleil, est l'un des plus grands jamais détectés.
Cela peut sembler effrayant, mais ce n'est pas le cas. Vous n'avez pas à craindre les trous noirs. Plus de 100 millions de trous noirs errent probablement dans notre galaxie à eux seuls, et ce sont des objets fascinants dans le cosmos.
Une voie sans issue
Selon leurs calculs, la mécanique quantique pourrait transformer l'horizon des événements en un immense mur de feu et tout ce qui entrerait en contact brûlerait en un instant. En ce sens, les trous noirs ne mènent nulle part, car rien ne pourra jamais y pénétrer.
De la difficulté de détecter le rayonnement de Hawking
Le trou noir s'évapore avec une température de rayonnement inversement proportionnelle à sa masse, ce qui fait que l'évaporation est d'autant plus rapide que le trou noir est petit.
Imaginons que l'on puisse avoir un trou noir équivalent à une masse solaire, même si ce n'est pas possible (il faut une masse minimale pour que les trous noirs puissent se former, située entre 3 et 5 masses solaires). Sa température serait « de l'ordre d'un dix-millionième de kelvins ».
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
Mauvaise nouvelle pour la Terre
Les forces gravitationnelles responsables de la spaghettification entreraient en action : la surface du globe la plus proche du trou noir serait soumise à une force bien supérieure à celle qui s'exercerait de l'autre côté, entraînant l'arrêt de mort de la planète.
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
Généralement, les trous noirs sont considérés comme sphériques. Et si un corps massif non sphérique venait à s'effondrer, quel serait le résultat ?
Un trou noir est une région de l'espace où le champ gravitationnel est si intense que toute matière qui y pénètre (même la lumière) ne peut plus en sortir. Autour du trou noir, la matière qu'il gobe se déplace en orbite. Elle est rassemblée dans ce qu'on appelle un disque d'accrétion.