Akira Haraguchi (原口 證, Haraguchi Akira) est un ingénieur japonais né le 27 novembre 1945 , connu pour avoir réussi à retenir 83 431 décimales du nombre π.
Le record actuel tient depuis le 21 octobre 2015: il est détenu par l'Indien Suresh Kumar Sharma, qui a récité 70.030 décimales du nombre pi en 17 heures et 14 minutes.
La Haute école des sciences appliquées des Grisons a établi un nouveau record de calcul du nombre Pi avec 62,8 billions (62'800 milliards) de décimales après la virgule.
Les dix derniers chiffres de Pi sont «7817924264», indique la HES qui indique qu'elle ne dévoilera le numéro complet qu'une fois le record aura été homologué par le Livre Guinness des records.
C'est Archimède, un mathématicien grec vivant à Syracuse, qui le premier démontre vers 250 avant J. -C. les formules du cercle et que c'est bien la même constante Pi qui intervient dans le calcul de la circonférence et celui de la surface.
Sa valeur approchée par défaut à moins de 0,5×10–15 près est 3,141592653589793 en écriture décimale. De nombreuses formules de physique, d'ingénierie et bien sûr de mathématiques impliquent π, qui est une des constantes les plus importantes de cette discipline.
Le nombre Pi est utilisé depuis l'Antiquité par les mathématiciens, d'abord pour résoudre des problèmes géométriques, puis dans le calcul intégral et enfin à l'ère informatique pour calculer toujours davantage de décimales de Pi.
3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 ...
Le célèbre mathématicien Archimède a tenté de calculer la valeur exacte de pi en 250 avant notre ère. Il a pour cela utilisé deux polygones à 96 côtés, l'un dessiné à l'intérieur d'un cercle et l'autre à l'extérieur. La valeur de pi se situait selon lui entre les longueurs du périmètre de chaque polygone.
Le nombre Pi est la plus célèbre constante mathématique. Il s'agit d'une « constante », car il correspond au rapport constant entre la circonférence d'un cercle et son diamètre. La plupart des gens connaissent sa base — 3,14 — mais ensuite cela se corse : et pour cause, c'est un nombre infini.
Il s'agit du rapport entre la circonférence d'un cercle et son diamètre ou entre la superficie d'un cercle et le carré de son rayon. 3,14 est une approximation, dans la réalité c'est 3,14159265358… Une suite infinie de décimales qui a valu au nombre Pi une salle entière au Palais de la découverte.
Chris Walton, dite «la Duchesse», a les ongles de la main droite qui mesurent 3,68 mètres, ceux de la main gauche 3,62 mètres seulement. Keith Furman a parcouru 1 mile en poussant une orange avec son nez, pendant 22 minutes 41 secondes. Il a aussi réalisé 8341 roulades avant (consécutives, évidemment).
C'est la 100 trillionième décimale de pi, découverte par un chercheur de Google en 2022. Pour aller plus loin : grâce aux progrès des technologie cloud, en 2022, un chercheuse de Google a battu son propre record en découvrant de nouvelles décimales de pi.
Le nombre d'or, aussi appelé ratio d'or, est un concept mathématique qui donne le nombre irrationnel phi ou Φ, qui équivaut approximativement à 1,618.
Pi sert à calculer la longueur de la circonférence d'un cercle.
Représenté par la lettre grecque"π", Pi est ce qu'on appelle un nombre irrationnel. C'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction comprenant deux nombres entiers. Si ce symbole existe depuis l'époque babylonienne, c'est le mathématicien grec Archimède qui, en 250 avant J.
La méthode de Monte-Carlo pour calculer π se fonde sur un principe très simple : la surface d'un disque de rayon r est πr2. Elle permet d'obtenir expérimentalement quelques décimales de π.
Ramanujan a travaillé principalement sur les fonctions elliptiques et sur la théorie analytique des nombres ; il est devenu célèbre pour ses résultats calculatoires impliquant des constantes telles que π et e, les nombres premiers ou encore la fonction partition d'un entier, qu'il a étudiée avec Hardy.
La suite de Fibonacci s'est rendue célèbre par ses représentations multiples en relation avec ce nombre mythique. On la trouve dans la fleur de tournesol, dans la formation de certains coquillages, sur l'ananas, le chou romain (ci-dessous) ou sur la pomme de pin qui présentent tous une spirale d'or.
Maintenez la touche Alt enfoncée, puis entrez 227 sur le pavé numérique. (Il s'agit de la valeur Windows correspondant au symbole pi ; les autres plates-formes possèdent des options de touches de composition similaires.)
La méthode d'Archimède permet d'obtenir une approximation du nombre π. Pour cela on calcule les périmètres de polygones réguliers inscrits et circonscrits à un cercle de rayon 12. Plus le nombre de côtés du polygone sera important, plus on se rapprochera du périmètre du cercle, à savoir π.
Tous les autres réels, qui ne peuvent donc pas être écrits en fraction de nombres entiers, sont appelés irrationnels, comme par exemple le nombre π (lettre grecque pi), égal à la longueur de la circonférence d'un cercle de diamètre de longueur 1. L'ensemble des nombres réels s'écrit en symboles mathématiques : « ℝ ».
Infini on vous dit : on ne peut pas en voir la fin car Pi est un nombre irrationnel, c'est-à-dire qu'il n'est pas le résultat du rapport entre deux entiers (on ne peut pas l'écrire sous forme de fraction).
En effet, il suffit de le multiplier par la bonne puissance de 10 (10 ou 100 ou 1 000 ou 10 000 ou ...) pour décaler suffisamment la virgule et obtenir un nombre entier. Ainsi 3,14 x 100 = 314 donc 3,14 = 314/100.
Al-Khawarizmi, au IXe siècle, est persuadé que π est irrationnel. Moïse Maïmonide fait également état de cette idée durant le XIIe siècle. Ce n'est cependant qu'au XVIIIe siècle que Johann Heinrich Lambert prouve ce résultat.