Les nombres entiers sont constitués de chiffres négatifs, positifs et nuls, alors que les nombres réels sont constitués uniquement de chiffres positifs et nuls. Par conséquent, les nombres entiers contiennent des nombres complets et sont souvent désignés par le symbole du nombre entier (Z).
L'ensemble ℤ vient de l'allemand zahlen qui signifie compter. Ainsi défini par Dedekind, il recouvre l'ensemble des nombres entiers relatifs (exemples : -3 -1 0 1 5). ℕ est inclus dans ℤ. L'ensemble ℚ a été défini par Peano, il vient de l'italien quotiente (la fraction).
Les nombres entiers, représentés par Z , regroupent tous les nombres entiers positifs et négatifs. On utilise fréquemment l'appellation nombres entiers relatifs. On peut voir l'ensemble des nombres entiers comme l'ensemble regroupant les nombres entiers naturels (N) et leurs opposés, les nombres entiers négatifs.
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
Qu'est-ce que l'ensemble Z ? Z est l'ensemble des nombres entiers relatifs, c'est à dire positifs, négatifs ou nuls. Z∗ (Z étoile) est l' ensemble des entiers relatifs sauf 0 (zéro). L'ensemble N est inclus dans l'ensemble Z (car tous les nombres entiers naturels font partie des entiers relatifs).
L'écriture algébrique d'un nombre complexe z est de la forme z=a+ib, avec a∈R et b \in \mathbb{R}. La partie réelle de z est a et sa partie imaginaire est b.
Un nombre entier relatif est un nombre entier qui peut être positif, négatif ou nul. L'ensemble des nombres relatifs se note . (« Z » est l'initiale du mot « Zahl » qui signifie « nombre » en allemand). On dit aussi un entier relatif au lieu de nombre entier relatif.
Grand N est actuellement une revue Interface reconnue par l'HCERES.
La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est popularisée par le mathématicien polycéphale Bourbaki (né en 1935).
L'ensemble ℝ
Un nombre réel est non seulement un nombre rationnel, mais peut aussi être un nombre dont le développement décimal est infini, et non périodique. Exemples : …. -5/4, -4, -4.2, -3, -2, -1.524, -1/2, 0, +0.7, +1, +2, +2.41, +3, +4/5, +5, +6, +6.75, +7/2, +8…
Un élément de ℤ/nℤ est la classe des éléments ayant tous le même reste par la division euclidienne par n. , ainsi dans ℤ/6ℤ, 2 désigne la classe contenant les éléments 2, 8, 14 etc. Quand il n'existe pas d'ambigüité, on utilise simplement la lettre a. Les éléments de ℤ/nℤ sont appelés classes modulo n ou résidus.
Construction de l'ensemble Z
des entiers naturels, muni de la loi interne addition, est un monoïde commutatif ; donc notre but est simplement de rajouter un opposé (élément symétrique pour l'addition) pour chaque entier non nul. Il ne s'agit pas de rajouter brutalement un élément, il faut aussi définir l'addition.
2 L'ensemble Z
C'est l'ensemble des nombres entiers relatifs. Un entier relatif est, non seulement, un entier naturel, mais se présente aussi comme un entier naturel muni d'un signe positif ou négatif. Exemples : …. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8, etc.
On peut munir l'ensemble des nombres complexes d'une addition et d'une multiplication qui en font un corps commutatif contenant le corps des nombres réels. Il est appelé corps des nombres complexes et se note ℂ.
On appelle ces nombres : les entiers naturels. Mais parfois, il n'y a rien à compter, le zéro est aussi un nombre entier naturel. C'est d'ailleurs le tout premier. L'ensemble des nombres entiers naturels se note ℕ (vient de l'italien « Naturale »).
Oui, 0 appartient à Q. En effet, 0 peut être écrit comme la fraction 0/1, où 0 est un entier et 1 est un entier non nul.
Définition. Étant donné un nombre complexe z non nul, un argument de z est une mesure (en radians, donc modulo 2π) de l'angle : où M est l'image de z dans le plan complexe, c'est-à-dire le point d'affixe z.
Les sous-groupes de (Z,+) sont les nZ, pour n ∈ Z. L'ensemble nZ désigne l'ensemble des multiples de n : nZ = { k·n | k ∈ Z } .
Un nombre entier relatif (ou simplement un entier) est un naturel muni d'un signe, positif (+) ou négatif (−). Deux nombres opposés sont deux nombres entiers qui ne diffèrent que par leur signe. L'ensemble des entiers se note Z, et celui des entiers non nuls se note Z0 ou Z∗.
Le symbole R désigne l'ensemble des nombres réels. Tous les nombres naturels, entiers, décimaux et rationnels sont des nombres réels.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle. L'ensemble des imaginaires purs est donc égal à iℝ (aussi noté iR).
Certains experts décrivent le "Z" comme la signification de "Za pobedy" ou "pour la victoire" en russe. D'autres avancent que le "Z" pourrait signifier "Zapad" ou "Ouest", en russe également. Aric Toler, chercheur pour Bellingcat explique à CNN que la lettre n'est jamais apparue avant le conflit en Ukraine.
Les nombres entiers relatifs sont des nombres entiers (0,1,5,6,...) ( 0 , 1 , 5 , 6 , . . . ) qui peuvent être positifs ou négatifs.
Les nombres naturels et les nombres entiers négatifs font ensemble les nombres entiers relatifs, c'est-à-dire positifs ou négatifs. 5 est un nombre entier : il ne possède pas de décimales.