Ker est un appellatif toponymique breton utilisé le plus souvent comme premier élément d'un toponyme. Il désigne un lieu habité, un domaine, un hameau. Il est également courant dans les patronymes bretons.
Le noyau d'un morphisme f est noté ker(f) ou Ker(f). Cette abréviation vient du mot allemand Kern qui signifie « noyau » (dans tous les sens du terme : l'analogie s'est propagée d'une langue à l'autre).
Le noyau de f , noté par Ker(f ), est l'ensemble des antécédents du vecteur 0 : Ker(f ) = {x | f (x) = 0} = {x | Ax = 0} = l'ensemble solutions du système Ax = 0 . {y (−1 1 ) | y ∈ R} = 〈 (−1 1 ) 〉. Donc une base est (−1 1 ) .
Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ∈ E|f (v)=0}.
Exercice 2 Soit f ∈ L(E) telle que f3 = f2 + f, montrer que E = kerf ⊕ Imf. −→ y = f (−→x) ∈ Imf ∩kerf, il s'agit de prouver que −→ y = −→ 0 . Ainsi −→ y = −→ 0 . est bien la somme d'un élément de kerf et d'un élément de Imf.
L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Pour démontrer que Imf et kerf sont des sous-espaces supplémentaires, il suffit de montrer que leur intersection est réduite au vecteur nul.
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
On appelle noyaude la matrice A, noté Ker (A) , l'ensemble des matrices colonnes X ∈ Mq,1(R) telles que AX = (0)p×1 .
Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ∈ E|f (v)=0}. Le noyau de la projection p := (x,y,z) ↦→ (x,y,0) de R3 sur son plan horizontal est l'axe vertical défini par x = y = 0.
La dimension de Im f est appelée rang de f et est notée rg f. Proposition 6 – Soit f : E → F une application linéaire. On pose Ker f = {x ∈ E ; f(x)=0} o`u0=0F . Ker f est un sous-espace vectoriel de E appelé noyau de f.
Aide simple. Prendre un vecteur \(u\) quelconque de \(E\), l'écrire dans la base \(B\), calculer son image \(f(u)\), puis traduire l'égalité \(f(u)=0\).
Le noyau de f est donc l'ensemble des fonctions polynômes P = b ( e 2 + e 1 − e 0 ) , c'est-à-dire telles que, pour tout réel x , P ( x ) = b ( x 2 + x − 1 ) , b appartenant à R .
On a E l'ensemble des vecteurs de l'espace (donc de dimension 3). Cela implique (théorème du rang) que la base de Im(f) doit être constituée de 2 vecteurs pour que dim(Im(f))=2.
L'image d'un vecteur →u par une application linéaire f se note f(→u) f ( u → ) et s'obtient en multipliant la matrice associée à f par le vecteur →u . On a ainsi, f(→u)=M→u f ( u → ) = M u → , M étant la matrice associée à l'aplication linéaire f.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
La diagonalisation d'un endomorphisme permet un calcul rapide et simple de ses puissances et de son exponentielle, ce qui permet d'exprimer numériquement certains systèmes dynamiques linéaires, obtenus par itération ou par des équations différentielles.
L'ordre d'une matrice est la dimension de cette matrice. La convention consiste à déterminer d'abord le nombre de lignes puis le nombre de colonnes. L'ordre d'une matrice est écrit comme le nombre de lignes par le nombre de colonnes. La matrice ? n'a qu'une seule ligne.
Pour trouver une base du noyau il faut d'abord trouver ledit noyau, c'est-à-dire résoudre le système f(V)=AV=0. L'image est engendrée par les vecteurs colonne de la matrice. Il faut voir combien d'entre eux sont linéairement indépendants, ou utiliser le théorème du rang. (Ici, le rang est 2 et le noyau de dimension 1).
Réciproquement, supposons que Kerf = {0}. Soit u, v ∈ E tels que f(u) = f(v), autrement dit f(u) − f(v) = 0. Comme f est linéaire, on a f(u) − f(v) = f(u − v) = 0, donc u − v ∈ Kerf. On en déduit que u − v = 0, c'est-`a-dire u = v.
On a, f(e1) = (2,-1,5) = 2v1 -5v2, f(e2)=(-1,-1,-1) = -v1 +v2, f(e3) = (1,0,0) = v1 -v2 -v3. Donc, MC,B(f) = 2 -1 1 5 1 -1 0 0 -1 . Exercice 1-4 Soient c = (e1,e2,e3) la base canonique de R3.
Al Khwârizmî est né vers 780 et mort vers 850. Malgré son utilité dans le monde des mathématiques, le savant reste mal connu.
Thalès de Milet (624 av JC - 547 av JC) Thalès est le premier mathématicien dont l'histoire ait retenu le nom. Il est né à Milet (voir une carte), en Asie mineure, sur les côtes méditerranéennes de l'actuelle Turquie, vers 624 av JC.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.