Si il y a égalité entre le côté le plus grand et la somme des longueurs des deux autres côtés, alors cela signifie que les trois points sont alignés. On peut dire que le triangle construit est un triangle aplati.
Chaque côté d'un triangle non aplati a une longueur strictement inférieure à la somme des longueurs des deux autres côtés. Pour vérifier si l'on peut construire un triangle à partir de trois longueurs données, il suffit de vérifier que la plus grande longueur est inférieure à la somme des deux autres.
1)Un triangle plat est un triangle dont les sommets sont alignés. 2)Si la somme des longueurs des petits côtés est égale à la longueur du plus grand côté, on a un triangle plat.
On commence par tracer un des côtés, par exemple [AB]. On trace alors le cercle de centre A et de rayon AC. Puis on construit, à l'aide du rapporteur, un angle de sommet A, dont un des côtés est la demi-droite [AB) et dont la mesure est celle de . Le cercle et la demi-droite se coupent en un point : C.
Conséquence : Pour qu'un triangle soit constructible, il faut que la longueur du plus grand côté soit inférieure à la somme des deux autres. Dans chaque cas, dire si le triangle ABC est constructible.
Définition. Un triangle isocèle est un triangle qui a deux côtés de même longueur. Remarque : on code l'égalité des longueurs en utilisant le même symbole.
La somme des trois angles est égale à 180° soit deux angles droits (ou encore radians. Ce qui implique que deux des angles sont toujours aigus. La somme des longueurs de deux côtés est toujours plus grande que la longueur du troisième côté.
ABC est un triangle équilatéral : il a trois côtés égaux ; il a trois angles égaux ; il a trois axes de symétrie.
Triangle dont aucun côté n'est égal à un autre.
Un triangle dans lequel au moins deux sommets sont confondus est dit dégénéré (ou parfois en aiguille). Un triangle plat est un triangle dont les sommets sont alignés. Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Les deux angles adjacents au troisième côté sont alors de même mesure.
(Géométrie) Angle de valeur égale à 180 degrés ou de 1/2 de tour.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Un triangle scalène a des côtés de longueurs variables. Ils sont inégaux et ses angles sont de trois mesures différentes. Cependant, la somme de ses angles est de 180°, comme tous les triangles.
Axes de symétrie d'un triangle
Un triangle quelconque n'admet pas d'axe de symétrie. Un triangle équilatéral possède trois axes de symétrie. Ces axes sont les médiatrices des trois côtés et les bissectrices des trois angles.
Géométrie plane
Un triangle acutangle (ou plus simplement triangle aigu) est un triangle dont tous les angles sont aigus, par opposition au triangle obtusangle comportant un angle obtus (ainsi que deux angles aigus), et au triangle rectangle dont un angle est droit et les deux autres sont aigus.
Un triangle unique est un triangle qui peut seulement être dessiné d'une façon. Un triangle est unique si on connaît la mesure des trois côtés, si on connaît deux côtés et l'angle qu'ils forment, si on connaît deux angles et le côté qui les sépare et si on connaît deux angles et un autre côté.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Angle aigu désigne, dans le domaine de la géométrie, un angle saillant inférieur dont la mesure est comprise entre 0° et 90°. Exemple : Le contraire d'un angle aigu est un angle obtus, sa mesure est donc supérieure à 90°.
Le triangle "quelconque " est appelé "triangle scalène" . Le triangle n ' ayant aucunes caractéristiques précises porte le nom de "triangle scalène" .
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Un triangle équilatéral est un triangle qui a ses trois côtés de même longueur. Triangle quelconque Un triangle quelconque est un triangle qui n'est pas isocèle, rectangle ou équilatéral.
Un triangle est équilatéral si les trois côtés ont la même longueur. Cependant, la définition d'un triangle isocèle n'est pas absolue. Euclide a écrit : " Un triangle est isocèle s'il a seulement deux côtés égaux".
Tracez un segment de droite.
Ce segment de droite va constituer un côté du triangle équilatéral. Cela veut dire que vous devrez tracer deux autres lignes mesurant exactement la même longueur que le segment en question. L'angle formé par chacune de ces deux lignes et le premier segment devra être de 60°.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.