En géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux.
Si les deux vecteurs sont perpendiculaires, le repère est dit orthogonal. Si les deux vecteurs ont la même longueur, on dit que le repère est normé. Et si les deux vecteurs sont perpendiculaires et s'ils ont la même longueur alors le repère est dit orthonormé.
Définition. Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires. Exemple : Sur le schéma ci-dessous, AB est un représentant du vecteur u et AC est un représentant du vecteur v . Comme les droites (AB) et (AC) sont perpendiculaires, les vecteurs u et v sont orthogonaux.
Définition 4.1.7. a) Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul. b) Une base est orthonormée si et seulement si ses vecteurs sont de norme 1 et deux `a deux orthogonaux.
Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Il y a deux formules élémentaires pour le produit scalaire qui sont couramment utilisées. Considérons les vecteurs u → = ( u x u y ) et v → = ( v x v y ) . Une première formule pour le produit scalaire est u → ⋅ v → = u x v x + u y v y .
Une base est orthonormale relativement à une forme bilinéaire symétrique si et seulement si la matrice associée à par rapport à cette base est la matrice unité.
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide.
Dans un espace vectoriel euclidien, une famille (e1,…,ep) ( e 1 , … , e p ) est dite orthonormale (on dit aussi orthonormée) si elle est constituée de vecteurs unitaires (de norme 1) deux à deux orthogonaux.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Grâce à ce repérage, on peut ensuite manipuler ces objets : effectuer des symétries, résoudre des problèmes, ... On construit un repère à partir d'un point que l'on choisit (appelé origine du repère). À partir de ce point, on définit des axes, c'est-à-dire des droites graduées (comme des règles).
On peut déterminer ses nouvelles coordonnées en commençant par tracer deux segments parallèles aux axes des abscisses et des ordonnées passant par le point 𝐶. D'après la définition du repère 𝐴 ; 𝑂, 𝐵, la longueur du segment 𝑂𝐴 est d'une unité sur l'axe des abscisses. Les coordonnées du point 𝐴 sont donc un, zéro.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 .
Donnée une base de Rn, il existe un procédé simple pour en déduire une base orthonormale. Essentiellement, on proc`ede par projections successives d'un vecteur sur le sous-espace engendré par ses prédécesseurs. u = projv1 ( v2) = − 1 5 (1, 2).
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Une base ( , , ) de l'espace est directe si et seulement si elle vérifie la "règle du bonhomme d'Ampère" : Un personnage ayant les pieds en O, la tête en A, et regardant vers B, voit le point C à sa gauche. Dans le cas contraire, elle est indirecte.
Un vecteur u → = A B → est représenté par une flèche. Le point initial s'appelle l'origine du vecteur. Le point final s'appelle l'extrémité du vecteur. Le nom du vecteur est noté (ou non) au dessus de la flèche qui représente le vecteur.
Le produit scalaire de deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 est égal au produit de leurs normes et du cosinus de l'angle qu'ils forment : ⃑ 𝑢 ⋅ ⃑ 𝑣 = ‖ ‖ ⃑ 𝑢 ‖ ‖ ⋅ ‖ ‖ ⃑ 𝑣 ‖ ‖ ⋅ 𝜃 , c o s où 𝜃 est l'angle entre ⃑ 𝑢 et ⃑ 𝑣 .