(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si le quotient est supérieur ou égal à 1 pour tout n, la suite est croissante. Si le quotient est inférieur ou égal à 1 pour tout n, la suite est décroissante. Si la position du quotient par rapport à 1 varie en fonction de la valeur de n, la suite n'est pas monotone.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
f(x) = f(x0). Théor`eme 6 (continuité et monotonie) Soit f : I → R une fonction monotone sur un intervalle I. La fonction f est continue sur I si et seulement si f(I) est un intervalle.
En gros une fonction est monotone si quelque soit un couple (a, b) compris dans I, tels que a<b alors f(a)<f(b) (ou f(a)>f(b)).
Les suites 'monotones' sont les suites croissantes ou décroissantes. Les suites 'strictement monotones' sont les suites strictement croissantes ou strictement décroissantes. Une suite est dite 'stationnaire' ou 'constante' si tous ses termes sont égaux.
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b].
Dispute et altercation, sont des mots synonymes.
En mathématiques, une fonction constante est une fonction qui ne prend qu'une seule valeur, indépendamment de sa variable.
Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
La courbe monotone est une représentation de la distribution de fréquences des puissances, très similaire à la courbe de fréquences cumulées des statisticiens.
Fonction mathématique, f définie sur un intervalle I est dite décroissante sur I si pour tous réels a et b appartenant à I tels que a < b, on a f(a) > f(b).
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
Une fonction strictement monotone est toujours injective, qu'elle soit continue ou non ; par contre il est essentiel de supposer que est continue sur un intervalle pour démontrer la deuxième partie de la proposition : si on enlève la contrainte de la continuité de la fonction, on peut trouver des fonctions injectives ...
Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
Re : Dérivée = 0
Si une dérivée est nulle en tout point, c'est que la fonction est contante, c'est-à-dire que pour tout x, f(x)=k avec k un réel.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0).
Une fonction affine représentée par une droite non parallèle à l'axe des ordonnées. Lorsque b = 0, il s'agit d'une fonction linéaire qui est représentée par une droite passant par l'origine du repère. Lorsque a = 0, on parle de fonction constante qui est représentée par une droite parallèle à l'axe des abscisses.
Le mot monotone est un adjectif qui signifie littéralement « qui est toujours sur le même ton, qui ne varie pas ». On parle notamment de voix monotone, de chant monotone, de flow monotone. Le mot monotone exprime donc une idée de régularité, de manque de variation.
Caractère monotone, uniforme, qui est toujours identique, pareil, sur le même ton, pas varié, pas différent.
C'est monotone, monotone, monotone ! أنها مملة, مملة, مملة!
Une fonction f : X → Y est dite bijective ou est une bijection si pour tout y dans l'ensemble d'arrivée Y il existe un et un seul x dans l'ensemble de définition X tel que f ( x ) = y . On dit encore dans ce cas que tout. élément y de Y admet un unique antécédent x (par f ).
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Un+1 - Un = [5n + 5 + 3] - [5n +3]. Un+1 - Un = [5n + 8] - [5n +3]. Un+1 - Un = 5n + 8 - 5n - 3 Un+1 - Un = 5. La différence Un+1 - Un est un réel ne dépendant pas de n (constant), donc la suite (Un) est arithmétique de raison r=5 et de premier terme U0= 3.