Si deux angles sont opposés par le sommet, alors ils sont égaux. Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante, alors ils sont égaux. Si un triangle est isocèle, alors ses angles à la base sont égaux.
Le triangle isocèle
il a deux côtés égaux ; il a deux angles égaux ; il a un axe de symétrie.
Si deux droites parallèles coupées par une sécantes forment deux angles correspondants, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles correspondants de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
L'angle nul, qui mesure 0°. L'angle plat, qui mesure 180°. L'angle plein, qui mesure 360°. L'angle saillant, qui mesure entre 0° et 180°.
Les angles correspondants n'ont pas le même sommet mais sont situés du même côté d'une droite sécante, l'un à l'intérieur et l'autre à l'extérieur de deux droites coupées par cette sécante. Des angles correspondants sont isométriques si et seulement si les deux droites coupées par la sécante sont parallèles.
Un angle droit est un angle qui mesure 90°. Un angle obtus est un angle qui mesure plus de 90°.
Deux angles formés par deux droites coupées par une sécante sont dits alternes-internes si : ils sont situés de part et d'autre de la sécante ; ils sont situés entre les deux droites ; ils ne sont pas adjacents.
Si vous considérez les deux angles du même côté que la ligne transversale, ils sont appelés angles intérieurs consécutifs. Si les lignes coupées par la transversale sont parallèles, les angles alternes-internes sont égaux.
Si deux droites sont parallèles alors les angles alternes-internes reposant sur ces droites sont égaux. Si deux angles alternes-internes sont égaux alors les droites sur lesquelles ils reposent sont parallèles.
Si deux triangles ont un angle de même mesure compris entre des côtés deux à deux de même longueur, alors ces deux triangles sont égaux.
Définition : Un rectangle est un quadrilatère qui a ses quatre angles droits. Propriétés: Si un parallélogramme a un angle droit, alors c'est un rectangle. Si un parallélogramme a ses diagonales de même longueur, alors c'est un rectangle.
ISOGONE, adj. GÉOM. Qui a des angles égaux.
Si deux angles sont opposés par le sommet, alors ils sont égaux. Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante, alors ils sont égaux. Si un triangle est isocèle, alors ses angles à la base sont égaux.
Un angle droit est délimité par deux droites perpendiculaires. Un angle obtus est plus grand qu'un angle droit. Un angle aigu est plus petit qu'un angle droit. Du plus petit au plus grand, on trouve l'angle aigu, puis l'angle droit et ensuite l'angle obtus.
En mathématiques, un angle obtus est un angle saillant dont la mesure est strictement supérieure à celle de l'angle droit, autrement dit un angle dont la mesure en degrés est comprise entre 90° exclu et 180° (soit entre π/2 exclu et π radians ).
Angle nul. Un angle nul est un angle dont les côtés sont superposés. Il mesure 0°.
Il y a des équerres avec un angle droit (90°), un angle à 60° et un angle à 30°. Il existe une autre équerre qui possède un angle droit et deux angles égaux mesurant 45°. Ce type d'équerre permet de petits tracés. Elle est très utilisée par les écoliers.
Selon les côtés, un triangle peut être équilatérale, isocèle et scalène et selon ses angles il peut être aigu, rectangle et obtus. Des plantes aux cellules, la géométrie est partout et ce n'est pas pour rien que c'est une partie si importante du monde des mathématiques.
La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°. Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
Un triangle est une figure polygonale fermée à trois côtés et trois angles. Un triangle scalène a des côtés de longueurs variables. Ils sont inégaux et ses angles sont de trois mesures différentes. Cependant, la somme de ses angles est de 180°, comme tous les triangles.