Mathématiques et théorème de Pythagore : énoncé et calcul Le théorème de Pythagore permet de calculer la longueur du côté le plus long d'un triangle rectangle, que l'on appelle aussi l'hypoténuse.
L'hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
L'hypoténuse d'un triangle rectangle est le côté qui est en face de l'angle droit. C'est le plus long des trois côtés du triangle.
En géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Théorème de Thalès (appliqué au triangle)
D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
b) Réciproque de Thalès.
Comme le théorème de Thalès est ainsi structuré : « Si des droites sont parallèles, alors des quotients de longueurs de segment sont égaux ». Sa réciproque ne peut être que de la forme : « Si des quotients de longueurs de segment sont égaux, alors des droites sont parallèles. »
En trigonométrie donc, le grand côté du triangle est l'hypoténuse et les deux autres côtés sont appelés cathètes. Ça m'intéresse, 25/03/2020, « Comment démontrer qu'un triangle est rectangle ? »
L'hypoténuse est toujours le côté le plus long du triangle rectangle (directement opposé à l'angle droit), le côté opposé est le côté directement opposé à l'angle en question, et le côté adjacent est le côté à côté de l'angle (qui n'est pas l'hypoténuse).
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
Définition : Quel est l'énoncé de la propriété de Pythagore et sa formule ? Selon Pythagore, dans un triangle rectangle, la somme des carrés des deux plus petits côtés, aussi appelés les jambes, est égale au carré de l'hypoténuse (le côté le plus long).
Théorème de Pythagore — Si un triangle ABC est rectangle en C, alors AB2 = AC2 + BC2.
Si un triangle ABC est rectangle en A, alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, c'est-à-dire : BC2 = AB2 + AC2.
Adjacent signifie « collé à », « à côté de ». Dans un triangle rectangle, les côtés adjacents à l'angle droit sont les deux côtés délimitant l'angle droit.
1 - Une vie de voyages
À son retour, en l'honneur de cette annonce divine, Mnesarchus change le nom de sa femme en Pythais et baptise son fils Pythagoras, qui signifie littéralement "annoncé par la Pythie''.
Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
Un peu de vocabulaire sur le triangle rectangle
Les côtés [AC] et [AB] forment l'angle droit du triangle tandis que le côté [BC] forme l'hypoténuse, le plus grand côté se situant face à l'angle droit. Les deux autres côtés (AB et AC), adjacents à l'angle droit, sont les cathètes.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Les trois côtés d'un triangle sont appelés « côté adjacent à l'angle », « côté opposé à l'angle » et « hypoténuse ».
On appelle côté opposé à l'angle le côté [AC]; le côté adjacent à l'angle est le côté qui forme l'angle et qui n'est pas l'hypoténuse, soit [AB].
Un angle est une portion du plan délimitée par deux demi-droites de même origine. Le point O, origine commune des demi-droites, est le sommet de l'angle. Les demi-droites [OA) et [OB) sont les côtés de l'angle.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
Pour cela, il va falloir calculer AE/AD dans un premier temps et calculer ensuite BE/CD. Ainsi AE/AD = BE/CD donc d'après la réciproque du théorème de Thalès, les deux droites sont parallèles. Si les résultats obtenus après calcul sont différents, cela signifie que les deux droites ne sont pas parallèles.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.