En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c2 = a2 + b2, où c est l'hypoténuse (le côté opposé à l'angle droit). Inversez le théorème pour résoudre a2 , c'est-à-dire a2 = c2 - b2 .
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
La longueur de chaque côté d'un rectangle est égale à la longueur du côté opposé. Contrairement au carré, qui est un cas particulier de rectangle, celui-ci a également des côtés adjacents inégaux.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Une méthode consiste à utiliser la propriété des côtés, qui stipule que si les trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les triangles sont congruents.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Selon Pythagore, dans un triangle rectangle abc, c étant l'hypoténuse (le plus long côté), on a l'équation suivante : a2 + b2 = c2. C'est cette équation qui va nous permettre de trouver la hauteur de notre triangle !
C tan C = mesure du côtéopposé mesure du côtéadjacent =AB AC C sin C = mesure du côté opposé mesure de l'hypoténuse =AB BC C cos C = mesure du côté adjacent mesure de l'hypoténuse =AC BC C Si dans un triangle ABC, BC2 = AB2 + AC2, alors le triangle est rectangle en A.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
On veut calculer la mesure exacte de la distance AC. [AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A. Son hypoténuse est [BC].
Le côté adjacent à un angle, dans un triangle rectangle, est le côté qui touche l'angle mais qui n'est pas l'hypoténuse. Par exemple, dans le triangle ABC, le côté adjacent à l'angle  est [AB].
D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2. v Réciproque du théorème de Pythagore : Si dans un triangle le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.
Cette relation est valable pour tous les côtés d'un triangle quelconque, d'où : b2 = a2 + c2 - 2ac cos. B.
« Si une droite passe par les milieux de deux côtés d'un triangle, alors elle est parallèle au troisième côté ». Les deux côtés du triangle doivent alors être égaux pour que cette droite soit parallèle. Dans cet exemple on sait que : I est le milieu de [AB], soit que [AI] = [IB]
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
Pour trouver les dimensions réelles, on multiplie les dimensions sur le plan par le dénominateur de l'échelle, puis on fait les conversions nécessaires. La formule de calcul est : Dimension réelle = Dimension sur le plan x Dénominateur de la fraction de l'échelle.
Définition Calcul de la longueur
Pour calculer la longueur du rectangle connaissant son aire et sa largeur, on divise l'aire par la largeur.
Considérons deux points p et p de coordonnées res- pectives (x, y) et (x ,y ). Leur distance euclidienne est donnée par la formule p−p = √ (x − x )2 + (y − y )2.