Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I. Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f '.
Graphiquement, la dérivée d'une fonction correspond à la pente de sa droite tangente en un point spécifique. L'illustration qui suit permet de visualiser la droite tangente (en bleu) d'une fonction quelconque en deux points distincts. Remarquez que l'inclinaison de la droite tangente varie d'un point à l'autre.
Plus précisément, une dérivée est une expression (numérique ou algébrique) donnant le rapport entre les variations infinitésimales de la fonction et les variations infinitésimales de son argument. Par exemple, la vitesse. est la dérivée. du déplacement.
Pour la retenir, la meilleur façon à mon avis est de la comparer à la dérivée d'une fonction quelconque u(x). Ici x est la variable et on note toujours (u(x))' = u'(x). Rien de nouveau. Maintenant, quand on compose 2 fonctions, on a u(v) où cette fois v est une fonction qui en fait s'écrit v(x).
Pour dériver ce type de fonctions, c'est extrêmement simple !! On dérive comme si c'était un x et non un u, et on multiplie toujours par u' !! Comme tu le vois c'est EXACTEMENT le même tableau que précédemment mais on a remplacé x par u, et on a multiplié à chaque fois la dérivée par u'.
La dérivée de 2x est égale à 2.
La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.
La dérivée de 1 est nulle, car c'est une constante.
Re : Dérivée = 0
Si une dérivée est nulle en tout point, c'est que la fonction est contante, c'est-à-dire que pour tout x, f(x)=k avec k un réel.
La dérivée permet de d'étudier les variations d'une fonction sur son domaine de définition. En terminale ES, la dérivée sert à déterminer les variations de la fonction.
La dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération.
Le coefficient directeur de la droite (AB) est égal à : f (b) − f (a) b− a . égal à : f (a + h) − f (a) a + h − a = f (a + h) − f (a) h . tend vers 0. Ce coefficient directeur s'appelle le nombre dérivé de f en a.
Dérivées : La dérivée de cosinus est égale à un sinus négatif, et la dérivée de sinus est égale à un cosinus positif.
Naissance de la notion de dérivée : Sir Issac Newton et Gottfried Wilheim Leibniz (fin du XVIIè s.)
Exemple : (3x2)' = 3 × 2x = 6x.
La dérivée de x² est 2x, donc la dérivée de 2x² est 2 x 2x = 4x. La dérivée de – 3x est – 3.
Comme la dérivée en un point représente la pente de la tangente à la courbe représentative en ce point, on en déduit que si on ne peut pas définir de tangente à la courbe représentative, la dérivée n'existe pas.
Le nombre dérivé au point x du produit u.v est égal à u(x) . v'(x) + u'(x) .
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
dérivée d'une fraction
La dérivée d'une "fraction" est: la dérivée du numérateur • le dénominateur – le numérateur • la dérivée du dénominateur, le tout divisé par le carré du dénominateur.
La notation f′ (qui se lit f prime ) pour désigner la dérivée de la fonction f est due au mathématicien français Lagrange (1736 - 1813). Cette notation est la plus usuelle et la plus simple si la fonction étudiée est une fonction d'une seule variable.
Autre exemple, la dérivée de la fonction cube f(x)=x3 f ( x ) = x 3 est f′(x)=3x2.