On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .
Si une fonction f f f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b ] [a;b] alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] .
Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].
f est défini sur l'intervalle [a,b], signifie que nous connaissons f (soit sa valeur, soit son expression, soit comment la calculer) pour chaque x∈[a,b] . En dehors de cet intervalle, nous ne savons rien de f.
A function is differentiable at a point when it is both continuous at the point and doesn't have a “cusp”. A cusp shows up if the slope of the function suddenly changes. An example of this can be seen in the image below. f ( x ) = { x 2 + 2 when x ≤ 1, − 2 x + 5 when x > 1.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.
La dérivée d'une fonction dans le calcul des normes variables , la sensibilité à la modification de la valeur de sortie par rapport à une modification de sa valeur d'entrée . Les dérivés sont un outil principal de calcul. Par exemple, la dérivée de la position d'un objet en mouvement selon l'intervalle de temps est la vitesse de l'objet.
La dérivée d'une fonction représente le taux de variation d'une variable par rapport à une autre variable . En d’autres termes, il donne le taux de variation de x par rapport à y. En ligne droite, cette valeur est appelée pente. Pour une courbe, cette valeur change continuellement.
Partie 1 : Fonctions croissantes et fonctions décroissantes
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b. Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
On rappelle qu'une fonction est continue sur un intervalle si elle est continue en tout point de l'intervalle. Par conséquent, nous devons déterminer si 𝑓 ( 𝑥 ) est continue en 𝑥 = 𝑎 pour tout 𝑎 ∈ [ 0 , 3 ] .
Une fonction n'aura qu'une ou zéro sortie pour chaque entrée . S'il existe plusieurs sorties pour une entrée particulière, l'équation ne définit pas de fonction. Cette équation se définit en fonction de puisque toute entrée n'a qu'une seule sortie.
Pour trouver le maximum d'une fonction sur un intervalle , il faut : déterminer la dérivée de la fonction, ; résoudre l'équation f ′ ( x ) = 0 ; vérifier qu'il s'agit d'un maximum en testant d'autres valeurs de la fonction, ou en utilisant la dérivée seconde.
Si l'on veut définir une fonction sur un intervalle et obtenir sa courbe il faut saisir : Fonction[expression en fonction de x, borne inf, borne sup]. Par exemple : si on tape dans la ligne de saisie la séquence Fonction[x²,- 4,3], on obtient le tracé de la parabole sur l'intervalle [-4 ;3].
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Énoncé On appelle généralement fonction nulle la fonction constante définie sur l'ensemble des nombres réels ou complexes par : ƒ(x) = 0.
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
La dérivée de f à la valeur x=a est définie comme la limite du taux de variation moyen de f sur l'intervalle [a,a+h] comme h→0.