Deux droites tracées dans un repère du plan sont parallèles si et seulement si leurs coefficients directeurs sont égaux. Elles sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1.
Les droites d'équations y = px + d et y' = p'x + d' sont parallèles p = p', c'est-à-dire si et seulement si elles ont le même coefficient directeur. Les droites d'équations y = px + d et y' = p'x + d' sont sécantes p ≠ p', c'est-à-dire si et seulement si leurs coefficients directeurs sont différents.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
Si deux droites sont perpendiculaires à une même droite, alors ces deux droites sont parallèles.
Théorème de Thalès (appliqué au triangle)
M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Deux droites sont parallèles si elles n'ont aucun point en commun. Elles sont distinctes et ne se croiseront jamais. Deux droites sont sécantes si elles se croisent en un point, nommé point d'intersection.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
(BH) coupe (AC) en Q, (CH) coupe (AB) en P . Alors (BC) et (PQ) sont parallèles. Puisque A,I,H sont distincts et alignés, il existe un réel k nbon nul tel que vectHI = k vect HA. Déduisez-en que H est le barycentre de (A,-2k), (B,1) (C,1).
En géométrie affine, deux droites sont dites parallèles si elles ont la même direction, c'est-à-dire si elles ont des vecteurs directeurs colinéaires. Toute droite étant parallèle à elle-même, lorsqu'on veut préciser que deux droites parallèles sont distinctes, on dit qu'elles sont strictement parallèles.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
La réciproque du théorème de Pythagore : Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des autres côtés alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté.
On vérifie si des droites sont parallèles en mesurant leur écartement. Si l'écartement est constant alors les droites sont parallèles.
On note (d) // (d'). Le signe « // » signifie parallèle. La distance entre deux droites parallèles reste constante.
Soient A et B deux points du plan P , α et β deux réels tels que α+β = 0 . Il existe un unique point G tel que : α −−→ GA +β −−→ GB = −→ 0 . Ce point est appelé barycentre des deux points pondérés (A, α) et (B , β) .
Les coordonnées X et Y du barycentre s'obtiennent en sommant les coordonnées pondérées de chaque site et en les divisant par la somme des pondérations. Autrement dit : pour chaque site, prendre ses coordonnées x et y, les multiplier par leur poids relatif, en faire la somme puis diviser par le total des poids relatifs.
Ainsi, G G est sur la droite (AA′) ( A A ′ ) . De même, G G est sur la droite (BB′) ( B B ′ ) et G G est sur la droite (CC′) ( C C ′ ) . Ainsi, les trois droites sont concourantes en G G . De plus, puisque G G est le barycentre de (A,1) ( A , 1 ) et (A′,2) ( A ′ , 2 ) , on a −−→AG=23−−→AA′ A G → = 2 3 A A ′ → .
Propriété : Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles. Conclusion : les droites et sont parallèles.
Avec une règle et une équerre (recommandé)
En tenant fermement l'équerre, on place la règle le long du côté de l'équerre qui ne longe pas la droite (d). En tenant fermement la règle, on déplace l'équerre le long de la règle, jusqu'au point A. On commence à tracer la parallèle à la droite (d) le long de l'équerre.
Comment démontrer une affirmation ? Pour démontrer une affirmation, nous devons utiliser un raisonnement mathématique. Des exemples sont le raisonnement par récurrence, le raisonnement déductif, le raisonnement par contre-exemple, le raisonnement par disjonction de cas et le raisonnement par l'absurde.
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Le théorème de Thalès permet d'obtenir l'égalité entre trois rapports de longueur. Ainsi, on peut s'en servir afin de déterminer des longueurs ou bien pour montrer que deux droites ne sont pas parallèles. Il s'utilise dans une configuration de triangles emboîtés ou bien en configuration « papillon ».
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.